ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-y^{2}+10-3y=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3y ବିୟୋଗ କରନ୍ତୁ.
-y^{2}-3y+10=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-3 ab=-10=-10
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -y^{2}+ay+by+10 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-10 2,-5
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -10 ପ୍ରଦାନ କରିଥାଏ.
1-10=-9 2-5=-3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=2 b=-5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -3 ପ୍ରଦାନ କରିଥାଏ.
\left(-y^{2}+2y\right)+\left(-5y+10\right)
\left(-y^{2}+2y\right)+\left(-5y+10\right) ଭାବରେ -y^{2}-3y+10 ପୁନଃ ଲେଖନ୍ତୁ.
y\left(-y+2\right)+5\left(-y+2\right)
ପ୍ରଥମଟିରେ y ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(-y+2\right)\left(y+5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ -y+2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
y=2 y=-5
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, -y+2=0 ଏବଂ y+5=0 ସମାଧାନ କରନ୍ତୁ.
-y^{2}+10-3y=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3y ବିୟୋଗ କରନ୍ତୁ.
-y^{2}-3y+10=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
y=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ -3, ଏବଂ c ପାଇଁ 10 ପ୍ରତିବଦଳ କରନ୍ତୁ.
y=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\times 10}}{2\left(-1\right)}
ବର୍ଗ -3.
y=\frac{-\left(-3\right)±\sqrt{9+4\times 10}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-\left(-3\right)±\sqrt{9+40}}{2\left(-1\right)}
4 କୁ 10 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-\left(-3\right)±\sqrt{49}}{2\left(-1\right)}
9 କୁ 40 ସହ ଯୋଡନ୍ତୁ.
y=\frac{-\left(-3\right)±7}{2\left(-1\right)}
49 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
y=\frac{3±7}{2\left(-1\right)}
-3 ର ବିପରୀତ ହେଉଛି 3.
y=\frac{3±7}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{10}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{3±7}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 3 କୁ 7 ସହ ଯୋଡନ୍ତୁ.
y=-5
10 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-\frac{4}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{3±7}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 3 ରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
y=2
-4 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-5 y=2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-y^{2}+10-3y=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3y ବିୟୋଗ କରନ୍ତୁ.
-y^{2}-3y=-10
ଉଭୟ ପାର୍ଶ୍ୱରୁ 10 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\frac{-y^{2}-3y}{-1}=-\frac{10}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+\left(-\frac{3}{-1}\right)y=-\frac{10}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
y^{2}+3y=-\frac{10}{-1}
-3 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+3y=10
-10 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+3y+\left(\frac{3}{2}\right)^{2}=10+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
y^{2}+3y+\frac{9}{4}=10+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
y^{2}+3y+\frac{9}{4}=\frac{49}{4}
10 କୁ \frac{9}{4} ସହ ଯୋଡନ୍ତୁ.
\left(y+\frac{3}{2}\right)^{2}=\frac{49}{4}
ଗୁଣନୀୟକ y^{2}+3y+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(y+\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
y+\frac{3}{2}=\frac{7}{2} y+\frac{3}{2}=-\frac{7}{2}
ସରଳୀକୃତ କରିବା.
y=2 y=-5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{2} ବିୟୋଗ କରନ୍ତୁ.