x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-1
x=3
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
y\in \mathrm{C}
x=-1\text{ or }x=3
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
y\in \mathrm{R}
x=-1\text{ or }x=3
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-x^{2}+2x+3=0
ଯାହାକିଛିର ଶୂନ୍ୟ ଗୁଣା ଶୂନ୍ୟ ଦେଇଥାଏ.
a+b=2 ab=-3=-3
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -x^{2}+ax+bx+3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
a=3 b=-1
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. କେବଳ ଏହିଭଳି ଯୋଡା ହେଉଛି ସିଷ୍ଟମ୍ ସମାଧାନ.
\left(-x^{2}+3x\right)+\left(-x+3\right)
\left(-x^{2}+3x\right)+\left(-x+3\right) ଭାବରେ -x^{2}+2x+3 ପୁନଃ ଲେଖନ୍ତୁ.
-x\left(x-3\right)-\left(x-3\right)
ପ୍ରଥମଟିରେ -x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -1 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-3\right)\left(-x-1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=3 x=-1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-3=0 ଏବଂ -x-1=0 ସମାଧାନ କରନ୍ତୁ.
-x^{2}+2x+3=0
ଯାହାକିଛିର ଶୂନ୍ୟ ଗୁଣା ଶୂନ୍ୟ ଦେଇଥାଏ.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 2, ଏବଂ c ପାଇଁ 3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
ବର୍ଗ 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
4 କୁ 12 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2±4}{2\left(-1\right)}
16 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-2±4}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±4}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
x=-1
2 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{6}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±4}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
x=3
-6 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-1 x=3
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-x^{2}+2x+3=0
ଯାହାକିଛିର ଶୂନ୍ୟ ଗୁଣା ଶୂନ୍ୟ ଦେଇଥାଏ.
-x^{2}+2x=-3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-2x=-\frac{3}{-1}
2 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x=3
-3 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x+1=3+1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-2x+1=4
3 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x-1\right)^{2}=4
ଗୁଣନୀୟକ x^{2}-2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-1=2 x-1=-2
ସରଳୀକୃତ କରିବା.
x=3 x=-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}