x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{\sqrt{77}}{3}+1\approx 3.924988129
x=-\frac{\sqrt{77}}{3}+1\approx -1.924988129
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-9x^{2}+18x+68=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-18±\sqrt{18^{2}-4\left(-9\right)\times 68}}{2\left(-9\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -9, b ପାଇଁ 18, ଏବଂ c ପାଇଁ 68 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-18±\sqrt{324-4\left(-9\right)\times 68}}{2\left(-9\right)}
ବର୍ଗ 18.
x=\frac{-18±\sqrt{324+36\times 68}}{2\left(-9\right)}
-4 କୁ -9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-18±\sqrt{324+2448}}{2\left(-9\right)}
36 କୁ 68 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-18±\sqrt{2772}}{2\left(-9\right)}
324 କୁ 2448 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-18±6\sqrt{77}}{2\left(-9\right)}
2772 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-18±6\sqrt{77}}{-18}
2 କୁ -9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{6\sqrt{77}-18}{-18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-18±6\sqrt{77}}{-18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -18 କୁ 6\sqrt{77} ସହ ଯୋଡନ୍ତୁ.
x=-\frac{\sqrt{77}}{3}+1
-18+6\sqrt{77} କୁ -18 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-6\sqrt{77}-18}{-18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-18±6\sqrt{77}}{-18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -18 ରୁ 6\sqrt{77} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{77}}{3}+1
-18-6\sqrt{77} କୁ -18 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{\sqrt{77}}{3}+1 x=\frac{\sqrt{77}}{3}+1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-9x^{2}+18x+68=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
-9x^{2}+18x+68-68=-68
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 68 ବିୟୋଗ କରନ୍ତୁ.
-9x^{2}+18x=-68
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 68 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{-9x^{2}+18x}{-9}=-\frac{68}{-9}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{18}{-9}x=-\frac{68}{-9}
-9 ଦ୍ୱାରା ବିଭାଜନ କରିବା -9 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-2x=-\frac{68}{-9}
18 କୁ -9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x=\frac{68}{9}
-68 କୁ -9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x+1=\frac{68}{9}+1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-2x+1=\frac{77}{9}
\frac{68}{9} କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x-1\right)^{2}=\frac{77}{9}
ଗୁଣନୀୟକ x^{2}-2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{77}{9}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-1=\frac{\sqrt{77}}{3} x-1=-\frac{\sqrt{77}}{3}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{77}}{3}+1 x=-\frac{\sqrt{77}}{3}+1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}