x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-\frac{1}{2}=-0.5
x = -\frac{8}{3} = -2\frac{2}{3} \approx -2.666666667
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-9x=6x^{2}+8+10x
2 କୁ 3x^{2}+4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-9x-6x^{2}=8+10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6x^{2} ବିୟୋଗ କରନ୍ତୁ.
-9x-6x^{2}-8=10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
-9x-6x^{2}-8-10x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 10x ବିୟୋଗ କରନ୍ତୁ.
-19x-6x^{2}-8=0
-19x ପାଇବାକୁ -9x ଏବଂ -10x ସମ୍ମେଳନ କରନ୍ତୁ.
-6x^{2}-19x-8=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-19 ab=-6\left(-8\right)=48
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -6x^{2}+ax+bx-8 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 48 ପ୍ରଦାନ କରିଥାଏ.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-3 b=-16
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -19 ପ୍ରଦାନ କରିଥାଏ.
\left(-6x^{2}-3x\right)+\left(-16x-8\right)
\left(-6x^{2}-3x\right)+\left(-16x-8\right) ଭାବରେ -6x^{2}-19x-8 ପୁନଃ ଲେଖନ୍ତୁ.
-3x\left(2x+1\right)-8\left(2x+1\right)
ପ୍ରଥମଟିରେ -3x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -8 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x+1\right)\left(-3x-8\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x+1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=-\frac{1}{2} x=-\frac{8}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2x+1=0 ଏବଂ -3x-8=0 ସମାଧାନ କରନ୍ତୁ.
-9x=6x^{2}+8+10x
2 କୁ 3x^{2}+4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-9x-6x^{2}=8+10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6x^{2} ବିୟୋଗ କରନ୍ତୁ.
-9x-6x^{2}-8=10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
-9x-6x^{2}-8-10x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 10x ବିୟୋଗ କରନ୍ତୁ.
-19x-6x^{2}-8=0
-19x ପାଇବାକୁ -9x ଏବଂ -10x ସମ୍ମେଳନ କରନ୍ତୁ.
-6x^{2}-19x-8=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -6, b ପାଇଁ -19, ଏବଂ c ପାଇଁ -8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-19\right)±\sqrt{361-4\left(-6\right)\left(-8\right)}}{2\left(-6\right)}
ବର୍ଗ -19.
x=\frac{-\left(-19\right)±\sqrt{361+24\left(-8\right)}}{2\left(-6\right)}
-4 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-19\right)±\sqrt{361-192}}{2\left(-6\right)}
24 କୁ -8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-19\right)±\sqrt{169}}{2\left(-6\right)}
361 କୁ -192 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-19\right)±13}{2\left(-6\right)}
169 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{19±13}{2\left(-6\right)}
-19 ର ବିପରୀତ ହେଉଛି 19.
x=\frac{19±13}{-12}
2 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{32}{-12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{19±13}{-12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 19 କୁ 13 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{8}{3}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{32}{-12} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{6}{-12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{19±13}{-12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 19 ରୁ 13 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{1}{2}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{6}{-12} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{8}{3} x=-\frac{1}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-9x=6x^{2}+8+10x
2 କୁ 3x^{2}+4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-9x-6x^{2}=8+10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6x^{2} ବିୟୋଗ କରନ୍ତୁ.
-9x-6x^{2}-10x=8
ଉଭୟ ପାର୍ଶ୍ୱରୁ 10x ବିୟୋଗ କରନ୍ତୁ.
-19x-6x^{2}=8
-19x ପାଇବାକୁ -9x ଏବଂ -10x ସମ୍ମେଳନ କରନ୍ତୁ.
-6x^{2}-19x=8
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-6x^{2}-19x}{-6}=\frac{8}{-6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{19}{-6}\right)x=\frac{8}{-6}
-6 ଦ୍ୱାରା ବିଭାଜନ କରିବା -6 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{19}{6}x=\frac{8}{-6}
-19 କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{19}{6}x=-\frac{4}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{8}{-6} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{19}{6}x+\left(\frac{19}{12}\right)^{2}=-\frac{4}{3}+\left(\frac{19}{12}\right)^{2}
\frac{19}{12} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{19}{6} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{19}{12} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{19}{6}x+\frac{361}{144}=-\frac{4}{3}+\frac{361}{144}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{19}{12} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{19}{6}x+\frac{361}{144}=\frac{169}{144}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{361}{144} ସହିତ -\frac{4}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{19}{12}\right)^{2}=\frac{169}{144}
ଗୁଣନୀୟକ x^{2}+\frac{19}{6}x+\frac{361}{144}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{19}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{19}{12}=\frac{13}{12} x+\frac{19}{12}=-\frac{13}{12}
ସରଳୀକୃତ କରିବା.
x=-\frac{1}{2} x=-\frac{8}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{19}{12} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}