ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-32n^{2}+56n=0
-8n କୁ 4n-7 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
n\left(-32n+56\right)=0
n ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
n=0 n=\frac{7}{4}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, n=0 ଏବଂ -32n+56=0 ସମାଧାନ କରନ୍ତୁ.
-32n^{2}+56n=0
-8n କୁ 4n-7 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
n=\frac{-56±\sqrt{56^{2}}}{2\left(-32\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -32, b ପାଇଁ 56, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
n=\frac{-56±56}{2\left(-32\right)}
56^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
n=\frac{-56±56}{-64}
2 କୁ -32 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{0}{-64}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{-56±56}{-64} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -56 କୁ 56 ସହ ଯୋଡନ୍ତୁ.
n=0
0 କୁ -64 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=-\frac{112}{-64}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{-56±56}{-64} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -56 ରୁ 56 ବିୟୋଗ କରନ୍ତୁ.
n=\frac{7}{4}
16 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-112}{-64} ହ୍ରାସ କରନ୍ତୁ.
n=0 n=\frac{7}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-32n^{2}+56n=0
-8n କୁ 4n-7 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{-32n^{2}+56n}{-32}=\frac{0}{-32}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -32 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n^{2}+\frac{56}{-32}n=\frac{0}{-32}
-32 ଦ୍ୱାରା ବିଭାଜନ କରିବା -32 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
n^{2}-\frac{7}{4}n=\frac{0}{-32}
8 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{56}{-32} ହ୍ରାସ କରନ୍ତୁ.
n^{2}-\frac{7}{4}n=0
0 କୁ -32 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n^{2}-\frac{7}{4}n+\left(-\frac{7}{8}\right)^{2}=\left(-\frac{7}{8}\right)^{2}
-\frac{7}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{7}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{7}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
n^{2}-\frac{7}{4}n+\frac{49}{64}=\frac{49}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{7}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(n-\frac{7}{8}\right)^{2}=\frac{49}{64}
ଗୁଣନୀୟକ n^{2}-\frac{7}{4}n+\frac{49}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(n-\frac{7}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
n-\frac{7}{8}=\frac{7}{8} n-\frac{7}{8}=-\frac{7}{8}
ସରଳୀକୃତ କରିବା.
n=\frac{7}{4} n=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{8} ଯୋଡନ୍ତୁ.