ଗୁଣକ
-\left(2x-3\right)\left(3x+5\right)
ମୂଲ୍ୟାୟନ କରିବା
15-x-6x^{2}
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a+b=-1 ab=-6\times 15=-90
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି -6x^{2}+ax+bx+15 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -90 ପ୍ରଦାନ କରିଥାଏ.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=9 b=-10
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -1 ପ୍ରଦାନ କରିଥାଏ.
\left(-6x^{2}+9x\right)+\left(-10x+15\right)
\left(-6x^{2}+9x\right)+\left(-10x+15\right) ଭାବରେ -6x^{2}-x+15 ପୁନଃ ଲେଖନ୍ତୁ.
-3x\left(2x-3\right)-5\left(2x-3\right)
ପ୍ରଥମଟିରେ -3x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x-3\right)\left(-3x-5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
-6x^{2}-x+15=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)\times 15}}{2\left(-6\right)}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-1\right)±\sqrt{1+24\times 15}}{2\left(-6\right)}
-4 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1+360}}{2\left(-6\right)}
24 କୁ 15 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{361}}{2\left(-6\right)}
1 କୁ 360 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-1\right)±19}{2\left(-6\right)}
361 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{1±19}{2\left(-6\right)}
-1 ର ବିପରୀତ ହେଉଛି 1.
x=\frac{1±19}{-12}
2 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{20}{-12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±19}{-12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 1 କୁ 19 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{5}{3}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{20}{-12} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{18}{-12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±19}{-12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 1 ରୁ 19 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{3}{2}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-18}{-12} ହ୍ରାସ କରନ୍ତୁ.
-6x^{2}-x+15=-6\left(x-\left(-\frac{5}{3}\right)\right)\left(x-\frac{3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -\frac{5}{3} ଏବଂ x_{2} ପାଇଁ \frac{3}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
-6x^{2}-x+15=-6\left(x+\frac{5}{3}\right)\left(x-\frac{3}{2}\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
-6x^{2}-x+15=-6\times \frac{-3x-5}{-3}\left(x-\frac{3}{2}\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା x ସହିତ \frac{5}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
-6x^{2}-x+15=-6\times \frac{-3x-5}{-3}\times \frac{-2x+3}{-2}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା x ରୁ \frac{3}{2} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
-6x^{2}-x+15=-6\times \frac{\left(-3x-5\right)\left(-2x+3\right)}{-3\left(-2\right)}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{-3x-5}{-3} କୁ \frac{-2x+3}{-2} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
-6x^{2}-x+15=-6\times \frac{\left(-3x-5\right)\left(-2x+3\right)}{6}
-3 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
-6x^{2}-x+15=-\left(-3x-5\right)\left(-2x+3\right)
-6 ଏବଂ 6 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 6 ବାତିଲ୍ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}