ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-5x^{2}-2-x^{2}=2x
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
-6x^{2}-2=2x
-6x^{2} ପାଇବାକୁ -5x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-6x^{2}-2-2x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
-6x^{2}-2x-2=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -6, b ପାଇଁ -2, ଏବଂ c ପାଇଁ -2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
ବର୍ଗ -2.
x=\frac{-\left(-2\right)±\sqrt{4+24\left(-2\right)}}{2\left(-6\right)}
-4 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{4-48}}{2\left(-6\right)}
24 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{-44}}{2\left(-6\right)}
4 କୁ -48 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-2\right)±2\sqrt{11}i}{2\left(-6\right)}
-44 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2±2\sqrt{11}i}{2\left(-6\right)}
-2 ର ବିପରୀତ ହେଉଛି 2.
x=\frac{2±2\sqrt{11}i}{-12}
2 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2+2\sqrt{11}i}{-12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{2±2\sqrt{11}i}{-12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 2 କୁ 2i\sqrt{11} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{11}i-1}{6}
2+2i\sqrt{11} କୁ -12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{11}i+2}{-12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{2±2\sqrt{11}i}{-12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 2 ରୁ 2i\sqrt{11} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-1+\sqrt{11}i}{6}
2-2i\sqrt{11} କୁ -12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{11}i-1}{6} x=\frac{-1+\sqrt{11}i}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-5x^{2}-2-x^{2}=2x
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
-6x^{2}-2=2x
-6x^{2} ପାଇବାକୁ -5x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-6x^{2}-2-2x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
-6x^{2}-2x=2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{-6x^{2}-2x}{-6}=\frac{2}{-6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{2}{-6}\right)x=\frac{2}{-6}
-6 ଦ୍ୱାରା ବିଭାଜନ କରିବା -6 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{1}{3}x=\frac{2}{-6}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{-6} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{1}{3}x=-\frac{1}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{2}{-6} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{1}{3}+\left(\frac{1}{6}\right)^{2}
\frac{1}{6} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{1}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{6} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{1}{3}+\frac{1}{36}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{6} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{11}{36}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{36} ସହିତ -\frac{1}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{1}{6}\right)^{2}=-\frac{11}{36}
ଗୁଣନୀୟକ x^{2}+\frac{1}{3}x+\frac{1}{36}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{11}{36}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{6}=\frac{\sqrt{11}i}{6} x+\frac{1}{6}=-\frac{\sqrt{11}i}{6}
ସରଳୀକୃତ କରିବା.
x=\frac{-1+\sqrt{11}i}{6} x=\frac{-\sqrt{11}i-1}{6}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{6} ବିୟୋଗ କରନ୍ତୁ.