B ପାଇଁ ସମାଧାନ କରନ୍ତୁ
B=\frac{1}{2}=0.5
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a+b=4 ab=-4\left(-1\right)=4
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -4B^{2}+aB+bB-1 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,4 2,2
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 4 ପ୍ରଦାନ କରିଥାଏ.
1+4=5 2+2=4
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=2 b=2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 4 ପ୍ରଦାନ କରିଥାଏ.
\left(-4B^{2}+2B\right)+\left(2B-1\right)
\left(-4B^{2}+2B\right)+\left(2B-1\right) ଭାବରେ -4B^{2}+4B-1 ପୁନଃ ଲେଖନ୍ତୁ.
-2B\left(2B-1\right)+2B-1
-4B^{2}+2Bରେ -2B ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2B-1\right)\left(-2B+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2B-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
B=\frac{1}{2} B=\frac{1}{2}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2B-1=0 ଏବଂ -2B+1=0 ସମାଧାନ କରନ୍ତୁ.
-4B^{2}+4B-1=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
B=\frac{-4±\sqrt{4^{2}-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -4, b ପାଇଁ 4, ଏବଂ c ପାଇଁ -1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
B=\frac{-4±\sqrt{16-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
ବର୍ଗ 4.
B=\frac{-4±\sqrt{16+16\left(-1\right)}}{2\left(-4\right)}
-4 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
B=\frac{-4±\sqrt{16-16}}{2\left(-4\right)}
16 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
B=\frac{-4±\sqrt{0}}{2\left(-4\right)}
16 କୁ -16 ସହ ଯୋଡନ୍ତୁ.
B=-\frac{4}{2\left(-4\right)}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
B=-\frac{4}{-8}
2 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
B=\frac{1}{2}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-4}{-8} ହ୍ରାସ କରନ୍ତୁ.
-4B^{2}+4B-1=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
-4B^{2}+4B-1-\left(-1\right)=-\left(-1\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.
-4B^{2}+4B=-\left(-1\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -1 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
-4B^{2}+4B=1
0 ରୁ -1 ବିୟୋଗ କରନ୍ତୁ.
\frac{-4B^{2}+4B}{-4}=\frac{1}{-4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
B^{2}+\frac{4}{-4}B=\frac{1}{-4}
-4 ଦ୍ୱାରା ବିଭାଜନ କରିବା -4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
B^{2}-B=\frac{1}{-4}
4 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
B^{2}-B=-\frac{1}{4}
1 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
B^{2}-B+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -1 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
B^{2}-B+\frac{1}{4}=\frac{-1+1}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
B^{2}-B+\frac{1}{4}=0
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{4} ସହିତ -\frac{1}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(B-\frac{1}{2}\right)^{2}=0
ଗୁଣନୀୟକ B^{2}-B+\frac{1}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(B-\frac{1}{2}\right)^{2}}=\sqrt{0}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
B-\frac{1}{2}=0 B-\frac{1}{2}=0
ସରଳୀକୃତ କରିବା.
B=\frac{1}{2} B=\frac{1}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ଯୋଡନ୍ତୁ.
B=\frac{1}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି. ସମାଧାନଗୁଡିକ ସମାନ ଅଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}