x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=-4+i
x=-4-i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-3x^{2}-24x-51=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-3\right)\left(-51\right)}}{2\left(-3\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -3, b ପାଇଁ -24, ଏବଂ c ପାଇଁ -51 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-3\right)\left(-51\right)}}{2\left(-3\right)}
ବର୍ଗ -24.
x=\frac{-\left(-24\right)±\sqrt{576+12\left(-51\right)}}{2\left(-3\right)}
-4 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-24\right)±\sqrt{576-612}}{2\left(-3\right)}
12 କୁ -51 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-24\right)±\sqrt{-36}}{2\left(-3\right)}
576 କୁ -612 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-24\right)±6i}{2\left(-3\right)}
-36 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{24±6i}{2\left(-3\right)}
-24 ର ବିପରୀତ ହେଉଛି 24.
x=\frac{24±6i}{-6}
2 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{24+6i}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{24±6i}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 24 କୁ 6i ସହ ଯୋଡନ୍ତୁ.
x=-4-i
24+6i କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{24-6i}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{24±6i}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 24 ରୁ 6i ବିୟୋଗ କରନ୍ତୁ.
x=-4+i
24-6i କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-4-i x=-4+i
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-3x^{2}-24x-51=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
-3x^{2}-24x-51-\left(-51\right)=-\left(-51\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 51 ଯୋଡନ୍ତୁ.
-3x^{2}-24x=-\left(-51\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -51 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
-3x^{2}-24x=51
0 ରୁ -51 ବିୟୋଗ କରନ୍ତୁ.
\frac{-3x^{2}-24x}{-3}=\frac{51}{-3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{24}{-3}\right)x=\frac{51}{-3}
-3 ଦ୍ୱାରା ବିଭାଜନ କରିବା -3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+8x=\frac{51}{-3}
-24 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+8x=-17
51 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+8x+4^{2}=-17+4^{2}
4 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 8 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 4 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+8x+16=-17+16
ବର୍ଗ 4.
x^{2}+8x+16=-1
-17 କୁ 16 ସହ ଯୋଡନ୍ତୁ.
\left(x+4\right)^{2}=-1
ଗୁଣନୀୟକ x^{2}+8x+16. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+4\right)^{2}}=\sqrt{-1}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+4=i x+4=-i
ସରଳୀକୃତ କରିବା.
x=-4+i x=-4-i
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}