ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-x^{2}+17x-52=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a+b=17 ab=-\left(-52\right)=52
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -x^{2}+ax+bx-52 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,52 2,26 4,13
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 52 ପ୍ରଦାନ କରିଥାଏ.
1+52=53 2+26=28 4+13=17
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=13 b=4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 17 ପ୍ରଦାନ କରିଥାଏ.
\left(-x^{2}+13x\right)+\left(4x-52\right)
\left(-x^{2}+13x\right)+\left(4x-52\right) ଭାବରେ -x^{2}+17x-52 ପୁନଃ ଲେଖନ୍ତୁ.
-x\left(x-13\right)+4\left(x-13\right)
ପ୍ରଥମଟିରେ -x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 4 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-13\right)\left(-x+4\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-13 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=13 x=4
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-13=0 ଏବଂ -x+4=0 ସମାଧାନ କରନ୍ତୁ.
-3x^{2}+51x-156=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-51±\sqrt{51^{2}-4\left(-3\right)\left(-156\right)}}{2\left(-3\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -3, b ପାଇଁ 51, ଏବଂ c ପାଇଁ -156 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-51±\sqrt{2601-4\left(-3\right)\left(-156\right)}}{2\left(-3\right)}
ବର୍ଗ 51.
x=\frac{-51±\sqrt{2601+12\left(-156\right)}}{2\left(-3\right)}
-4 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-51±\sqrt{2601-1872}}{2\left(-3\right)}
12 କୁ -156 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-51±\sqrt{729}}{2\left(-3\right)}
2601 କୁ -1872 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-51±27}{2\left(-3\right)}
729 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-51±27}{-6}
2 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{24}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-51±27}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -51 କୁ 27 ସହ ଯୋଡନ୍ତୁ.
x=4
-24 କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{78}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-51±27}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -51 ରୁ 27 ବିୟୋଗ କରନ୍ତୁ.
x=13
-78 କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=4 x=13
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-3x^{2}+51x-156=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
-3x^{2}+51x-156-\left(-156\right)=-\left(-156\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 156 ଯୋଡନ୍ତୁ.
-3x^{2}+51x=-\left(-156\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -156 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
-3x^{2}+51x=156
0 ରୁ -156 ବିୟୋଗ କରନ୍ତୁ.
\frac{-3x^{2}+51x}{-3}=\frac{156}{-3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{51}{-3}x=\frac{156}{-3}
-3 ଦ୍ୱାରା ବିଭାଜନ କରିବା -3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-17x=\frac{156}{-3}
51 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-17x=-52
156 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-52+\left(-\frac{17}{2}\right)^{2}
-\frac{17}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -17 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{17}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-17x+\frac{289}{4}=-52+\frac{289}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{17}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-17x+\frac{289}{4}=\frac{81}{4}
-52 କୁ \frac{289}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{17}{2}\right)^{2}=\frac{81}{4}
ଗୁଣନୀୟକ x^{2}-17x+\frac{289}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{17}{2}=\frac{9}{2} x-\frac{17}{2}=-\frac{9}{2}
ସରଳୀକୃତ କରିବା.
x=13 x=4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{17}{2} ଯୋଡନ୍ତୁ.