ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2\left(-x^{2}+13x-12\right)
2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a+b=13 ab=-\left(-12\right)=12
-x^{2}+13x-12କୁ ବିବେଚନା କରନ୍ତୁ. ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି -x^{2}+ax+bx-12 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,12 2,6 3,4
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 12 ପ୍ରଦାନ କରିଥାଏ.
1+12=13 2+6=8 3+4=7
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=12 b=1
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 13 ପ୍ରଦାନ କରିଥାଏ.
\left(-x^{2}+12x\right)+\left(x-12\right)
\left(-x^{2}+12x\right)+\left(x-12\right) ଭାବରେ -x^{2}+13x-12 ପୁନଃ ଲେଖନ୍ତୁ.
-x\left(x-12\right)+x-12
-x^{2}+12xରେ -x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-12\right)\left(-x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-12 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
2\left(x-12\right)\left(-x+1\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
-2x^{2}+26x-24=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-26±\sqrt{26^{2}-4\left(-2\right)\left(-24\right)}}{2\left(-2\right)}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-26±\sqrt{676-4\left(-2\right)\left(-24\right)}}{2\left(-2\right)}
ବର୍ଗ 26.
x=\frac{-26±\sqrt{676+8\left(-24\right)}}{2\left(-2\right)}
-4 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-26±\sqrt{676-192}}{2\left(-2\right)}
8 କୁ -24 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-26±\sqrt{484}}{2\left(-2\right)}
676 କୁ -192 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-26±22}{2\left(-2\right)}
484 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-26±22}{-4}
2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{4}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-26±22}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -26 କୁ 22 ସହ ଯୋଡନ୍ତୁ.
x=1
-4 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{48}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-26±22}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -26 ରୁ 22 ବିୟୋଗ କରନ୍ତୁ.
x=12
-48 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-2x^{2}+26x-24=-2\left(x-1\right)\left(x-12\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 1 ଏବଂ x_{2} ପାଇଁ 12 ପ୍ରତିବଦଳ କରନ୍ତୁ.