ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
k ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-2k-1+k^{2}=-1
ଉଭୟ ପାର୍ଶ୍ଵକୁ k^{2} ଯୋଡନ୍ତୁ.
-2k-1+k^{2}+1=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 1 ଯୋଡନ୍ତୁ.
-2k+k^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
k\left(-2+k\right)=0
k ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
k=0 k=2
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, k=0 ଏବଂ -2+k=0 ସମାଧାନ କରନ୍ତୁ.
-2k-1+k^{2}=-1
ଉଭୟ ପାର୍ଶ୍ଵକୁ k^{2} ଯୋଡନ୍ତୁ.
-2k-1+k^{2}+1=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 1 ଯୋଡନ୍ତୁ.
-2k+k^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
k^{2}-2k=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
k=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -2, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
k=\frac{-\left(-2\right)±2}{2}
\left(-2\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
k=\frac{2±2}{2}
-2 ର ବିପରୀତ ହେଉଛି 2.
k=\frac{4}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ k=\frac{2±2}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 2 କୁ 2 ସହ ଯୋଡନ୍ତୁ.
k=2
4 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
k=\frac{0}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ k=\frac{2±2}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 2 ରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
k=0
0 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
k=2 k=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-2k-1+k^{2}=-1
ଉଭୟ ପାର୍ଶ୍ଵକୁ k^{2} ଯୋଡନ୍ତୁ.
-2k-1+k^{2}+1=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 1 ଯୋଡନ୍ତୁ.
-2k+k^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
k^{2}-2k=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
k^{2}-2k+1=1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
\left(k-1\right)^{2}=1
ଗୁଣନୀୟକ k^{2}-2k+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(k-1\right)^{2}}=\sqrt{1}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
k-1=1 k-1=-1
ସରଳୀକୃତ କରିବା.
k=2 k=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.