x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{\sqrt{41} - 3}{2} \approx 1.701562119
x=\frac{-\sqrt{41}-3}{2}\approx -4.701562119
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-x^{2}-3x+8=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ -3, ଏବଂ c ପାଇଁ 8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\times 8}}{2\left(-1\right)}
ବର୍ଗ -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\times 8}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-3\right)±\sqrt{9+32}}{2\left(-1\right)}
4 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-3\right)±\sqrt{41}}{2\left(-1\right)}
9 କୁ 32 ସହ ଯୋଡନ୍ତୁ.
x=\frac{3±\sqrt{41}}{2\left(-1\right)}
-3 ର ବିପରୀତ ହେଉଛି 3.
x=\frac{3±\sqrt{41}}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{41}+3}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{3±\sqrt{41}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 3 କୁ \sqrt{41} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{41}-3}{2}
3+\sqrt{41} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{3-\sqrt{41}}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{3±\sqrt{41}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 3 ରୁ \sqrt{41} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{41}-3}{2}
3-\sqrt{41} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{41}-3}{2} x=\frac{\sqrt{41}-3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-x^{2}-3x+8=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
-x^{2}-3x+8-8=-8
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
-x^{2}-3x=-8
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 8 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{-x^{2}-3x}{-1}=-\frac{8}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{3}{-1}\right)x=-\frac{8}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+3x=-\frac{8}{-1}
-3 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+3x=8
-8 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=8+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+3x+\frac{9}{4}=8+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+3x+\frac{9}{4}=\frac{41}{4}
8 କୁ \frac{9}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{3}{2}\right)^{2}=\frac{41}{4}
ଗୁଣନୀୟକ x^{2}+3x+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{2}=\frac{\sqrt{41}}{2} x+\frac{3}{2}=-\frac{\sqrt{41}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{41}-3}{2} x=\frac{-\sqrt{41}-3}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{2} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}