ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-\frac{3}{2}x^{2}-4x-3=1
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
-\frac{3}{2}x^{2}-4x-3-1=1-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
-\frac{3}{2}x^{2}-4x-3-1=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 1 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
-\frac{3}{2}x^{2}-4x-4=0
-3 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-\frac{3}{2}\right)\left(-4\right)}}{2\left(-\frac{3}{2}\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -\frac{3}{2}, b ପାଇଁ -4, ଏବଂ c ପାଇଁ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-\frac{3}{2}\right)\left(-4\right)}}{2\left(-\frac{3}{2}\right)}
ବର୍ଗ -4.
x=\frac{-\left(-4\right)±\sqrt{16+6\left(-4\right)}}{2\left(-\frac{3}{2}\right)}
-4 କୁ -\frac{3}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-24}}{2\left(-\frac{3}{2}\right)}
6 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{-8}}{2\left(-\frac{3}{2}\right)}
16 କୁ -24 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-4\right)±2\sqrt{2}i}{2\left(-\frac{3}{2}\right)}
-8 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4±2\sqrt{2}i}{2\left(-\frac{3}{2}\right)}
-4 ର ବିପରୀତ ହେଉଛି 4.
x=\frac{4±2\sqrt{2}i}{-3}
2 କୁ -\frac{3}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4+2\sqrt{2}i}{-3}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{2}i}{-3} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 2i\sqrt{2} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2\sqrt{2}i-4}{3}
4+2i\sqrt{2} କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{2}i+4}{-3}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{2}i}{-3} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 2i\sqrt{2} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-4+2\sqrt{2}i}{3}
4-2i\sqrt{2} କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{2}i-4}{3} x=\frac{-4+2\sqrt{2}i}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-\frac{3}{2}x^{2}-4x-3=1
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
-\frac{3}{2}x^{2}-4x-3-\left(-3\right)=1-\left(-3\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.
-\frac{3}{2}x^{2}-4x=1-\left(-3\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -3 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
-\frac{3}{2}x^{2}-4x=4
1 ରୁ -3 ବିୟୋଗ କରନ୍ତୁ.
\frac{-\frac{3}{2}x^{2}-4x}{-\frac{3}{2}}=\frac{4}{-\frac{3}{2}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{3}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x^{2}+\left(-\frac{4}{-\frac{3}{2}}\right)x=\frac{4}{-\frac{3}{2}}
-\frac{3}{2} ଦ୍ୱାରା ବିଭାଜନ କରିବା -\frac{3}{2} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{8}{3}x=\frac{4}{-\frac{3}{2}}
-\frac{3}{2} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା -4 କୁ ଗୁଣନ କରି -4 କୁ -\frac{3}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{8}{3}x=-\frac{8}{3}
-\frac{3}{2} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା 4 କୁ ଗୁଣନ କରି 4 କୁ -\frac{3}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=-\frac{8}{3}+\left(\frac{4}{3}\right)^{2}
\frac{4}{3} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{8}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{4}{3} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{8}{3}+\frac{16}{9}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{4}{3} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{8}{9}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{16}{9} ସହିତ -\frac{8}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{4}{3}\right)^{2}=-\frac{8}{9}
ଗୁଣନୀୟକ x^{2}+\frac{8}{3}x+\frac{16}{9}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{-\frac{8}{9}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{4}{3}=\frac{2\sqrt{2}i}{3} x+\frac{4}{3}=-\frac{2\sqrt{2}i}{3}
ସରଳୀକୃତ କରିବା.
x=\frac{-4+2\sqrt{2}i}{3} x=\frac{-2\sqrt{2}i-4}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{4}{3} ବିୟୋଗ କରନ୍ତୁ.