ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-\left(5x-1\right)\times 2=\left(4x-3\right)x
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ \frac{1}{5},\frac{3}{4} ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(4x-3\right)\left(5x-1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 4x-3,5x-1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
-\left(10x-2\right)=\left(4x-3\right)x
5x-1 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-10x+2=\left(4x-3\right)x
10x-2 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
-10x+2=4x^{2}-3x
4x-3 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-10x+2-4x^{2}=-3x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x^{2} ବିୟୋଗ କରନ୍ତୁ.
-10x+2-4x^{2}+3x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3x ଯୋଡନ୍ତୁ.
-7x+2-4x^{2}=0
-7x ପାଇବାକୁ -10x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
-4x^{2}-7x+2=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-7 ab=-4\times 2=-8
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -4x^{2}+ax+bx+2 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-8 2,-4
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -8 ପ୍ରଦାନ କରିଥାଏ.
1-8=-7 2-4=-2
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=1 b=-8
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -7 ପ୍ରଦାନ କରିଥାଏ.
\left(-4x^{2}+x\right)+\left(-8x+2\right)
\left(-4x^{2}+x\right)+\left(-8x+2\right) ଭାବରେ -4x^{2}-7x+2 ପୁନଃ ଲେଖନ୍ତୁ.
-x\left(4x-1\right)-2\left(4x-1\right)
ପ୍ରଥମଟିରେ -x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(4x-1\right)\left(-x-2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 4x-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{1}{4} x=-2
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 4x-1=0 ଏବଂ -x-2=0 ସମାଧାନ କରନ୍ତୁ.
-\left(5x-1\right)\times 2=\left(4x-3\right)x
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ \frac{1}{5},\frac{3}{4} ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(4x-3\right)\left(5x-1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 4x-3,5x-1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
-\left(10x-2\right)=\left(4x-3\right)x
5x-1 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-10x+2=\left(4x-3\right)x
10x-2 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
-10x+2=4x^{2}-3x
4x-3 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-10x+2-4x^{2}=-3x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x^{2} ବିୟୋଗ କରନ୍ତୁ.
-10x+2-4x^{2}+3x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3x ଯୋଡନ୍ତୁ.
-7x+2-4x^{2}=0
-7x ପାଇବାକୁ -10x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
-4x^{2}-7x+2=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -4, b ପାଇଁ -7, ଏବଂ c ପାଇଁ 2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-4\right)\times 2}}{2\left(-4\right)}
ବର୍ଗ -7.
x=\frac{-\left(-7\right)±\sqrt{49+16\times 2}}{2\left(-4\right)}
-4 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{49+32}}{2\left(-4\right)}
16 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{81}}{2\left(-4\right)}
49 କୁ 32 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-7\right)±9}{2\left(-4\right)}
81 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{7±9}{2\left(-4\right)}
-7 ର ବିପରୀତ ହେଉଛି 7.
x=\frac{7±9}{-8}
2 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{16}{-8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{7±9}{-8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 7 କୁ 9 ସହ ଯୋଡନ୍ତୁ.
x=-2
16 କୁ -8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{2}{-8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{7±9}{-8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 7 ରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{-8} ହ୍ରାସ କରନ୍ତୁ.
x=-2 x=\frac{1}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-\left(5x-1\right)\times 2=\left(4x-3\right)x
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ \frac{1}{5},\frac{3}{4} ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(4x-3\right)\left(5x-1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 4x-3,5x-1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
-\left(10x-2\right)=\left(4x-3\right)x
5x-1 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-10x+2=\left(4x-3\right)x
10x-2 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
-10x+2=4x^{2}-3x
4x-3 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-10x+2-4x^{2}=-3x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x^{2} ବିୟୋଗ କରନ୍ତୁ.
-10x+2-4x^{2}+3x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3x ଯୋଡନ୍ତୁ.
-7x+2-4x^{2}=0
-7x ପାଇବାକୁ -10x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
-7x-4x^{2}=-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
-4x^{2}-7x=-2
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-4x^{2}-7x}{-4}=-\frac{2}{-4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{7}{-4}\right)x=-\frac{2}{-4}
-4 ଦ୍ୱାରା ବିଭାଜନ କରିବା -4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{7}{4}x=-\frac{2}{-4}
-7 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{4}x=\frac{1}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{-4} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=\frac{1}{2}+\left(\frac{7}{8}\right)^{2}
\frac{7}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{7}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{1}{2}+\frac{49}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{81}{64}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{49}{64} ସହିତ \frac{1}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{7}{8}\right)^{2}=\frac{81}{64}
ଗୁଣନୀୟକ x^{2}+\frac{7}{4}x+\frac{49}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{7}{8}=\frac{9}{8} x+\frac{7}{8}=-\frac{9}{8}
ସରଳୀକୃତ କରିବା.
x=\frac{1}{4} x=-2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{8} ବିୟୋଗ କରନ୍ତୁ.