ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-14+xx=-17x
ଭାରିଏବୁଲ୍‌ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ x ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-14+x^{2}=-17x
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
-14+x^{2}+17x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 17x ଯୋଡନ୍ତୁ.
x^{2}+17x-14=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-17±\sqrt{17^{2}-4\left(-14\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 17, ଏବଂ c ପାଇଁ -14 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-17±\sqrt{289-4\left(-14\right)}}{2}
ବର୍ଗ 17.
x=\frac{-17±\sqrt{289+56}}{2}
-4 କୁ -14 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-17±\sqrt{345}}{2}
289 କୁ 56 ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{345}-17}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-17±\sqrt{345}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -17 କୁ \sqrt{345} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{345}-17}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-17±\sqrt{345}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -17 ରୁ \sqrt{345} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{345}-17}{2} x=\frac{-\sqrt{345}-17}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-14+xx=-17x
ଭାରିଏବୁଲ୍‌ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ x ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-14+x^{2}=-17x
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
-14+x^{2}+17x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 17x ଯୋଡନ୍ତୁ.
x^{2}+17x=14
ଉଭୟ ପାର୍ଶ୍ଵକୁ 14 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
x^{2}+17x+\left(\frac{17}{2}\right)^{2}=14+\left(\frac{17}{2}\right)^{2}
\frac{17}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 17 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{17}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+17x+\frac{289}{4}=14+\frac{289}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{17}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+17x+\frac{289}{4}=\frac{345}{4}
14 କୁ \frac{289}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{17}{2}\right)^{2}=\frac{345}{4}
ଗୁଣନୀୟକ x^{2}+17x+\frac{289}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{17}{2}\right)^{2}}=\sqrt{\frac{345}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{17}{2}=\frac{\sqrt{345}}{2} x+\frac{17}{2}=-\frac{\sqrt{345}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{345}-17}{2} x=\frac{-\sqrt{345}-17}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{17}{2} ବିୟୋଗ କରନ୍ତୁ.