x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-4
x=2
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-\frac{1}{2}x^{2}-x+4=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{1}{2}\right)\times 4}}{2\left(-\frac{1}{2}\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -\frac{1}{2}, b ପାଇଁ -1, ଏବଂ c ପାଇଁ 4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1+2\times 4}}{2\left(-\frac{1}{2}\right)}
-4 କୁ -\frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-\frac{1}{2}\right)}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-\frac{1}{2}\right)}
1 କୁ 8 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-1\right)±3}{2\left(-\frac{1}{2}\right)}
9 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{1±3}{2\left(-\frac{1}{2}\right)}
-1 ର ବିପରୀତ ହେଉଛି 1.
x=\frac{1±3}{-1}
2 କୁ -\frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4}{-1}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±3}{-1} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 1 କୁ 3 ସହ ଯୋଡନ୍ତୁ.
x=-4
4 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{2}{-1}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±3}{-1} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 1 ରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
x=2
-2 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-4 x=2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-\frac{1}{2}x^{2}-x+4=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
-\frac{1}{2}x^{2}-x+4-4=-4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
-\frac{1}{2}x^{2}-x=-4
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 4 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{-\frac{1}{2}x^{2}-x}{-\frac{1}{2}}=-\frac{4}{-\frac{1}{2}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x^{2}+\left(-\frac{1}{-\frac{1}{2}}\right)x=-\frac{4}{-\frac{1}{2}}
-\frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରିବା -\frac{1}{2} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+2x=-\frac{4}{-\frac{1}{2}}
-\frac{1}{2} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା -1 କୁ ଗୁଣନ କରି -1 କୁ -\frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+2x=8
-\frac{1}{2} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା -4 କୁ ଗୁଣନ କରି -4 କୁ -\frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+2x+1^{2}=8+1^{2}
1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+2x+1=8+1
ବର୍ଗ 1.
x^{2}+2x+1=9
8 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x+1\right)^{2}=9
ଗୁଣନୀୟକ x^{2}+2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+1=3 x+1=-3
ସରଳୀକୃତ କରିବା.
x=2 x=-4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}