ମୂଲ୍ୟାୟନ କରିବା
5
ଗୁଣକ
5
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\left(\sqrt{2}-1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{2-2\sqrt{2}+1}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
-\frac{3-2\sqrt{2}}{4\sqrt{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
3 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
ଲବ ଓ ହରକୁ \sqrt{2} ଦ୍ୱାରା ଗୁଣନ କରି \frac{3-2\sqrt{2}}{4\sqrt{2}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{4\times 2}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
8 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\left(\sqrt{5}+\sqrt{3}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{5} ର ଚତୁର୍ଭୁଜ ହେଉଛି 5.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
ଏକାଧିକ \sqrt{5} ଏବଂ \sqrt{3}କୁ, ସ୍କେୟାର୍ ରୁଟ୍ରେ ଏକାଧିକ ସଂଖ୍ୟା.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{5+2\sqrt{15}+3}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{8+2\sqrt{15}}{\sqrt{15}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
8 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
ଲବ ଓ ହରକୁ \sqrt{15} ଦ୍ୱାରା ଗୁଣନ କରି \frac{8+2\sqrt{15}}{\sqrt{15}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(\sqrt{2}+1\right)^{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{15} ର ଚତୁର୍ଭୁଜ ହେଉଛି 15.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\left(\sqrt{2}+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{2+2\sqrt{2}+1}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{3+2\sqrt{2}}{4\sqrt{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
3 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 1 ଯୋଗ କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
ଲବ ଓ ହରକୁ \sqrt{2} ଦ୍ୱାରା ଗୁଣନ କରି \frac{3+2\sqrt{2}}{4\sqrt{2}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{4\times 2}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{\sqrt{15}}
8 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
\left(\sqrt{5}-\sqrt{3}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
\sqrt{5} ର ଚତୁର୍ଭୁଜ ହେଉଛି 5.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{\sqrt{15}}
ଏକାଧିକ \sqrt{5} ଏବଂ \sqrt{3}କୁ, ସ୍କେୟାର୍ ରୁଟ୍ରେ ଏକାଧିକ ସଂଖ୍ୟା.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{5-2\sqrt{15}+3}{\sqrt{15}}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{8-2\sqrt{15}}{\sqrt{15}}
8 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
ଲବ ଓ ହରକୁ \sqrt{15} ଦ୍ୱାରା ଗୁଣନ କରି \frac{8-2\sqrt{15}}{\sqrt{15}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
-\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8}+\frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
\sqrt{15} ର ଚତୁର୍ଭୁଜ ହେଉଛି 15.
-\frac{15\left(3-2\sqrt{2}\right)\sqrt{2}}{120}+\frac{8\left(8+2\sqrt{15}\right)\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 8 ଏବଂ 15 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 120. -\frac{\left(3-2\sqrt{2}\right)\sqrt{2}}{8} କୁ \frac{15}{15} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{\left(8+2\sqrt{15}\right)\sqrt{15}}{15} କୁ \frac{8}{8} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-15\left(3-2\sqrt{2}\right)\sqrt{2}+8\left(8+2\sqrt{15}\right)\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
ଯେହେତୁ -\frac{15\left(3-2\sqrt{2}\right)\sqrt{2}}{120} ଏବଂ \frac{8\left(8+2\sqrt{15}\right)\sqrt{15}}{120} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{-45\sqrt{2}+60+64\sqrt{15}+240}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
-15\left(3-2\sqrt{2}\right)\sqrt{2}+8\left(8+2\sqrt{15}\right)\sqrt{15} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120}+\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
-45\sqrt{2}+60+64\sqrt{15}+240 ରେ ହିସାବଗୁଡିକ କରନ୍ତୁ.
\frac{-45\sqrt{2}+300+64\sqrt{15}}{120}+\frac{15\left(3+2\sqrt{2}\right)\sqrt{2}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 120 ଏବଂ 8 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 120. \frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{8} କୁ \frac{15}{15} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-45\sqrt{2}+300+64\sqrt{15}+15\left(3+2\sqrt{2}\right)\sqrt{2}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
ଯେହେତୁ \frac{-45\sqrt{2}+300+64\sqrt{15}}{120} ଏବଂ \frac{15\left(3+2\sqrt{2}\right)\sqrt{2}}{120} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{-45\sqrt{2}+300+64\sqrt{15}+45\sqrt{2}+60}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
-45\sqrt{2}+300+64\sqrt{15}+15\left(3+2\sqrt{2}\right)\sqrt{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{360+64\sqrt{15}}{120}-\frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15}
-45\sqrt{2}+300+64\sqrt{15}+45\sqrt{2}+60 ରେ ହିସାବଗୁଡିକ କରନ୍ତୁ.
\frac{360+64\sqrt{15}}{120}-\frac{8\left(8-2\sqrt{15}\right)\sqrt{15}}{120}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 120 ଏବଂ 15 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 120. \frac{\left(8-2\sqrt{15}\right)\sqrt{15}}{15} କୁ \frac{8}{8} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{360+64\sqrt{15}-8\left(8-2\sqrt{15}\right)\sqrt{15}}{120}
ଯେହେତୁ \frac{360+64\sqrt{15}}{120} ଏବଂ \frac{8\left(8-2\sqrt{15}\right)\sqrt{15}}{120} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{360+64\sqrt{15}-64\sqrt{15}+240}{120}
360+64\sqrt{15}-8\left(8-2\sqrt{15}\right)\sqrt{15} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{600}{120}
360+64\sqrt{15}-64\sqrt{15}+240 ରେ ହିସାବଗୁଡିକ କରନ୍ତୁ.
5
5 ପ୍ରାପ୍ତ କରିବାକୁ 600 କୁ 120 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}