x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right)
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
5\left(50-\frac{x-100}{5}\right)x-5500>0
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ. ଯେହେତୁ 5 ଧନାତ୍ମକ ଅଟେ, ଅସମାନତା ଦିଗ ସମାନ ରହିଥାଏ |
\left(250+5\left(-\frac{x-100}{5}\right)\right)x-5500>0
5 କୁ 50-\frac{x-100}{5} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\left(250+\frac{-5\left(x-100\right)}{5}\right)x-5500>0
5\left(-\frac{x-100}{5}\right) କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\left(250-\left(x-100\right)\right)x-5500>0
5 ଏବଂ 5 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\left(250-x-\left(-100\right)\right)x-5500>0
x-100 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
\left(250-x+100\right)x-5500>0
-100 ର ବିପରୀତ ହେଉଛି 100.
\left(350-x\right)x-5500>0
350 ପ୍ରାପ୍ତ କରିବାକୁ 250 ଏବଂ 100 ଯୋଗ କରନ୍ତୁ.
350x-x^{2}-5500>0
350-x କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-350x+x^{2}+5500<0
ସର୍ବୋଚ୍ଚ ଘାତର ଗୁଣାଙ୍କକୁ 350x-x^{2}-5500 ଧନାତ୍ମକରେ ପରିଣତ କରିବାକୁ -1 ଦ୍ୱାରା ଅସମତାକୁ ଗୁଣନ କରନ୍ତୁ. ଯେହେତୁ -1 ଋଣାତ୍ମକ ଅଟେ, ଅସମାନତା ଦିଗ ପରିବର୍ତ୍ତନ ହୋଇଛି |
-350x+x^{2}+5500=0
ଅସମତାକୁ ସମାଧାନ କରିବାକୁ, ହାମ ହାତ ପାର୍ଶ୍ୱର ଗୁଣକ ବାହାର କରନ୍ତୁ. ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-350\right)±\sqrt{\left(-350\right)^{2}-4\times 1\times 5500}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ -350, ଏବଂ c ପାଇଁ 5500 କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{350±10\sqrt{1005}}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=5\sqrt{1005}+175 x=175-5\sqrt{1005}
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x=\frac{350±10\sqrt{1005}}{2} ସମାଧାନ କରନ୍ତୁ.
\left(x-\left(5\sqrt{1005}+175\right)\right)\left(x-\left(175-5\sqrt{1005}\right)\right)<0
ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଅସମତାକୁ ପୁନଃ ଲେଖନ୍ତୁ.
x-\left(5\sqrt{1005}+175\right)>0 x-\left(175-5\sqrt{1005}\right)<0
ଉତ୍ପାଦ ଋଣାତ୍ମକ ହେବା ପାଇଁ, x-\left(5\sqrt{1005}+175\right) ଏବଂ x-\left(175-5\sqrt{1005}\right) ବିପରୀତ ଚିହ୍ନର ହେବା ଆବଶ୍ୟକ. ଯେତେବେଳେ x-\left(5\sqrt{1005}+175\right) ଧନାତ୍ମକ ଏବଂ x-\left(175-5\sqrt{1005}\right) ଋଣାତ୍ମକ ହୋଇଥାଏ କେସ୍ ବିଚାର କରନ୍ତୁ.
x\in \emptyset
ଏହା କୌଣସି x ପାଇଁ ମିଥ୍ୟା ଅଟେ.
x-\left(175-5\sqrt{1005}\right)>0 x-\left(5\sqrt{1005}+175\right)<0
ଯେତେବେଳେ x-\left(175-5\sqrt{1005}\right) ଧନାତ୍ମକ ଏବଂ x-\left(5\sqrt{1005}+175\right) ଋଣାତ୍ମକ ହୋଇଥାଏ କେସ୍ ବିଚାର କରନ୍ତୁ.
x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right)
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right).
x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right)
ଚୁଡାନ୍ତ ସମାଧାନ ହେଉଛି ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକର ଯୋଗ ଅଟେ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}