ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

9x^{2}-6x-8=7
3x+2 କୁ 3x-4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
9x^{2}-6x-8-7=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
9x^{2}-6x-15=0
-15 ପ୍ରାପ୍ତ କରିବାକୁ -8 ଏବଂ 7 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\left(-15\right)}}{2\times 9}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 9, b ପାଇଁ -6, ଏବଂ c ପାଇଁ -15 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9\left(-15\right)}}{2\times 9}
ବର୍ଗ -6.
x=\frac{-\left(-6\right)±\sqrt{36-36\left(-15\right)}}{2\times 9}
-4 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{36+540}}{2\times 9}
-36 କୁ -15 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{576}}{2\times 9}
36 କୁ 540 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-6\right)±24}{2\times 9}
576 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{6±24}{2\times 9}
-6 ର ବିପରୀତ ହେଉଛି 6.
x=\frac{6±24}{18}
2 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{30}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{6±24}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 6 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
x=\frac{5}{3}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{30}{18} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{18}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{6±24}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 6 ରୁ 24 ବିୟୋଗ କରନ୍ତୁ.
x=-1
-18 କୁ 18 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5}{3} x=-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
9x^{2}-6x-8=7
3x+2 କୁ 3x-4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
9x^{2}-6x=7+8
ଉଭୟ ପାର୍ଶ୍ଵକୁ 8 ଯୋଡନ୍ତୁ.
9x^{2}-6x=15
15 ପ୍ରାପ୍ତ କରିବାକୁ 7 ଏବଂ 8 ଯୋଗ କରନ୍ତୁ.
\frac{9x^{2}-6x}{9}=\frac{15}{9}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{6}{9}\right)x=\frac{15}{9}
9 ଦ୍ୱାରା ବିଭାଜନ କରିବା 9 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{2}{3}x=\frac{15}{9}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-6}{9} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{2}{3}x=\frac{5}{3}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{15}{9} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{5}{3}+\left(-\frac{1}{3}\right)^{2}
-\frac{1}{3} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{2}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{3} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{5}{3}+\frac{1}{9}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{3} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{16}{9}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{9} ସହିତ \frac{5}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{1}{3}\right)^{2}=\frac{16}{9}
ଗୁଣନୀୟକ x^{2}-\frac{2}{3}x+\frac{1}{9}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{3}=\frac{4}{3} x-\frac{1}{3}=-\frac{4}{3}
ସରଳୀକୃତ କରିବା.
x=\frac{5}{3} x=-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{3} ଯୋଡନ୍ତୁ.