ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

6x^{2}+7x+2=1
3x+2 କୁ 2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
6x^{2}+7x+2-1=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
6x^{2}+7x+1=0
1 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-7±\sqrt{7^{2}-4\times 6}}{2\times 6}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 6, b ପାଇଁ 7, ଏବଂ c ପାଇଁ 1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49-4\times 6}}{2\times 6}
ବର୍ଗ 7.
x=\frac{-7±\sqrt{49-24}}{2\times 6}
-4 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{25}}{2\times 6}
49 କୁ -24 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-7±5}{2\times 6}
25 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-7±5}{12}
2 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{2}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±5}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -7 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{1}{6}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{12} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{12}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±5}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -7 ରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x=-1
-12 କୁ 12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{1}{6} x=-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
6x^{2}+7x+2=1
3x+2 କୁ 2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
6x^{2}+7x=1-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
6x^{2}+7x=-1
-1 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
\frac{6x^{2}+7x}{6}=-\frac{1}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{6}x=-\frac{1}{6}
6 ଦ୍ୱାରା ବିଭାଜନ କରିବା 6 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=-\frac{1}{6}+\left(\frac{7}{12}\right)^{2}
\frac{7}{12} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{7}{6} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{12} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{7}{6}x+\frac{49}{144}=-\frac{1}{6}+\frac{49}{144}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{12} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{25}{144}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{49}{144} ସହିତ -\frac{1}{6} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{7}{12}\right)^{2}=\frac{25}{144}
ଗୁଣନୀୟକ x^{2}+\frac{7}{6}x+\frac{49}{144}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{7}{12}=\frac{5}{12} x+\frac{7}{12}=-\frac{5}{12}
ସରଳୀକୃତ କରିବା.
x=-\frac{1}{6} x=-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{12} ବିୟୋଗ କରନ୍ତୁ.