x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-8
x=3
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2x^{2}+10x-12=36
2x-2 କୁ x+6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+10x-12-36=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 36 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+10x-48=0
-48 ପ୍ରାପ୍ତ କରିବାକୁ -12 ଏବଂ 36 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-10±\sqrt{10^{2}-4\times 2\left(-48\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ 10, ଏବଂ c ପାଇଁ -48 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-10±\sqrt{100-4\times 2\left(-48\right)}}{2\times 2}
ବର୍ଗ 10.
x=\frac{-10±\sqrt{100-8\left(-48\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-10±\sqrt{100+384}}{2\times 2}
-8 କୁ -48 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-10±\sqrt{484}}{2\times 2}
100 କୁ 384 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-10±22}{2\times 2}
484 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-10±22}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{12}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-10±22}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -10 କୁ 22 ସହ ଯୋଡନ୍ତୁ.
x=3
12 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{32}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-10±22}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -10 ରୁ 22 ବିୟୋଗ କରନ୍ତୁ.
x=-8
-32 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=3 x=-8
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}+10x-12=36
2x-2 କୁ x+6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+10x=36+12
ଉଭୟ ପାର୍ଶ୍ଵକୁ 12 ଯୋଡନ୍ତୁ.
2x^{2}+10x=48
48 ପ୍ରାପ୍ତ କରିବାକୁ 36 ଏବଂ 12 ଯୋଗ କରନ୍ତୁ.
\frac{2x^{2}+10x}{2}=\frac{48}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{10}{2}x=\frac{48}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+5x=\frac{48}{2}
10 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+5x=24
48 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=24+\left(\frac{5}{2}\right)^{2}
\frac{5}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 5 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+5x+\frac{25}{4}=24+\frac{25}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{5}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+5x+\frac{25}{4}=\frac{121}{4}
24 କୁ \frac{25}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{5}{2}\right)^{2}=\frac{121}{4}
ଗୁଣନୀୟକ x^{2}+5x+\frac{25}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{5}{2}=\frac{11}{2} x+\frac{5}{2}=-\frac{11}{2}
ସରଳୀକୃତ କରିବା.
x=3 x=-8
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{5}{2} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}