ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

-y^{2}+3y+5=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
y=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 3, ଏବଂ c ପାଇଁ 5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
y=\frac{-3±\sqrt{9-4\left(-1\right)\times 5}}{2\left(-1\right)}
ବର୍ଗ 3.
y=\frac{-3±\sqrt{9+4\times 5}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-3±\sqrt{9+20}}{2\left(-1\right)}
4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-3±\sqrt{29}}{2\left(-1\right)}
9 କୁ 20 ସହ ଯୋଡନ୍ତୁ.
y=\frac{-3±\sqrt{29}}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{\sqrt{29}-3}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-3±\sqrt{29}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -3 କୁ \sqrt{29} ସହ ଯୋଡନ୍ତୁ.
y=\frac{3-\sqrt{29}}{2}
-3+\sqrt{29} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=\frac{-\sqrt{29}-3}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-3±\sqrt{29}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -3 ରୁ \sqrt{29} ବିୟୋଗ କରନ୍ତୁ.
y=\frac{\sqrt{29}+3}{2}
-3-\sqrt{29} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=\frac{3-\sqrt{29}}{2} y=\frac{\sqrt{29}+3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-y^{2}+3y+5=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
-y^{2}+3y+5-5=-5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
-y^{2}+3y=-5
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 5 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{-y^{2}+3y}{-1}=-\frac{5}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+\frac{3}{-1}y=-\frac{5}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
y^{2}-3y=-\frac{5}{-1}
3 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}-3y=5
-5 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=5+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
y^{2}-3y+\frac{9}{4}=5+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
y^{2}-3y+\frac{9}{4}=\frac{29}{4}
5 କୁ \frac{9}{4} ସହ ଯୋଡନ୍ତୁ.
\left(y-\frac{3}{2}\right)^{2}=\frac{29}{4}
ଗୁଣନୀୟକ y^{2}-3y+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
y-\frac{3}{2}=\frac{\sqrt{29}}{2} y-\frac{3}{2}=-\frac{\sqrt{29}}{2}
ସରଳୀକୃତ କରିବା.
y=\frac{\sqrt{29}+3}{2} y=\frac{3-\sqrt{29}}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ଯୋଡନ୍ତୁ.