ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
d ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

12\left(y+\frac{y^{3}}{3}+\frac{x^{2}}{2}\right)dx+3\left(x+xy^{2}\right)dy=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 12 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3,2,4 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
12\left(y+\frac{2y^{3}}{6}+\frac{3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 3 ଏବଂ 2 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 6. \frac{y^{3}}{3} କୁ \frac{2}{2} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{x^{2}}{2} କୁ \frac{3}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
12\left(y+\frac{2y^{3}+3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
ଯେହେତୁ \frac{2y^{3}}{6} ଏବଂ \frac{3x^{2}}{6} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\left(12y+12\times \frac{2y^{3}+3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
12 କୁ y+\frac{2y^{3}+3x^{2}}{6} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\left(12y+2\left(2y^{3}+3x^{2}\right)\right)dx+3\left(x+xy^{2}\right)dy=0
12 ଏବଂ 6 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 6 ବାତିଲ୍‌ କରନ୍ତୁ.
\left(12y+4y^{3}+6x^{2}\right)dx+3\left(x+xy^{2}\right)dy=0
2 କୁ 2y^{3}+3x^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\left(12yd+4y^{3}d+6x^{2}d\right)x+3\left(x+xy^{2}\right)dy=0
12y+4y^{3}+6x^{2} କୁ d ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
12ydx+4y^{3}dx+6dx^{3}+3\left(x+xy^{2}\right)dy=0
12yd+4y^{3}d+6x^{2}d କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
12ydx+4y^{3}dx+6dx^{3}+\left(3x+3xy^{2}\right)dy=0
3 କୁ x+xy^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
12ydx+4y^{3}dx+6dx^{3}+\left(3xd+3xy^{2}d\right)y=0
3x+3xy^{2} କୁ d ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
12ydx+4y^{3}dx+6dx^{3}+3xdy+3xdy^{3}=0
3xd+3xy^{2}d କୁ y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
15ydx+4y^{3}dx+6dx^{3}+3xdy^{3}=0
15ydx ପାଇବାକୁ 12ydx ଏବଂ 3xdy ସମ୍ମେଳନ କରନ୍ତୁ.
15ydx+7y^{3}dx+6dx^{3}=0
7y^{3}dx ପାଇବାକୁ 4y^{3}dx ଏବଂ 3xdy^{3} ସମ୍ମେଳନ କରନ୍ତୁ.
\left(15yx+7y^{3}x+6x^{3}\right)d=0
d ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(6x^{3}+7xy^{3}+15xy\right)d=0
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
d=0
0 କୁ 15yx+7y^{3}x+6x^{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.