m ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}m=\frac{20x^{2}-280x+981}{20no\left(x+6\right)x^{2}}\text{, }&x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }n\neq 0\\m\in \mathrm{C}\text{, }&\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }n=0\right)\text{ or }\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }n=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\end{matrix}\right.
n ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}n=\frac{20x^{2}-280x+981}{20mo\left(x+6\right)x^{2}}\text{, }&x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }m\neq 0\\n\in \mathrm{C}\text{, }&\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }m=0\right)\text{ or }\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }m=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\end{matrix}\right.
m ପାଇଁ ସମାଧାନ କରନ୍ତୁ
m=\frac{20x^{2}-280x+981}{20no\left(x+6\right)x^{2}}
x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }n\neq 0
n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
n=\frac{20x^{2}-280x+981}{20mo\left(x+6\right)x^{2}}
x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }m\neq 0
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
\left(x-7\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
x^{2} କୁ 6+x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
6x^{2}+x^{3} କୁ m ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
6x^{2}m+x^{3}m କୁ o ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
6x^{2}mo+x^{3}mo କୁ n ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
6x^{2}mon+x^{3}mon ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
ଉଭୟ ପାର୍ଶ୍ଵକୁ 14x ଯୋଡନ୍ତୁ.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
ଉଭୟ ପାର୍ଶ୍ୱରୁ 49 ବିୟୋଗ କରନ୍ତୁ.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
-\frac{981}{20} ପ୍ରାପ୍ତ କରିବାକୁ -\frac{1}{20} ଏବଂ 49 ବିୟୋଗ କରନ୍ତୁ.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
m ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -6x^{2}on-x^{3}on ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
-6x^{2}on-x^{3}on ଦ୍ୱାରା ବିଭାଜନ କରିବା -6x^{2}on-x^{3}on ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
m=-\frac{-20x^{2}+280x-981}{20no\left(x+6\right)x^{2}}
-x^{2}+14x-\frac{981}{20} କୁ -6x^{2}on-x^{3}on ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
\left(x-7\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
x^{2} କୁ 6+x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
6x^{2}+x^{3} କୁ m ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
6x^{2}m+x^{3}m କୁ o ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
6x^{2}mo+x^{3}mo କୁ n ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
6x^{2}mon+x^{3}mon ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
ଉଭୟ ପାର୍ଶ୍ଵକୁ 14x ଯୋଡନ୍ତୁ.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
ଉଭୟ ପାର୍ଶ୍ୱରୁ 49 ବିୟୋଗ କରନ୍ତୁ.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
-\frac{981}{20} ପ୍ରାପ୍ତ କରିବାକୁ -\frac{1}{20} ଏବଂ 49 ବିୟୋଗ କରନ୍ତୁ.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
n ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -6x^{2}mo-x^{3}mo ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
-6x^{2}mo-x^{3}mo ଦ୍ୱାରା ବିଭାଜନ କରିବା -6x^{2}mo-x^{3}mo ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
n=-\frac{-20x^{2}+280x-981}{20mo\left(x+6\right)x^{2}}
-x^{2}+14x-\frac{981}{20} କୁ -6x^{2}mo-x^{3}mo ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
\left(x-7\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
x^{2} କୁ 6+x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
6x^{2}+x^{3} କୁ m ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
6x^{2}m+x^{3}m କୁ o ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
6x^{2}mo+x^{3}mo କୁ n ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
6x^{2}mon+x^{3}mon ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
ଉଭୟ ପାର୍ଶ୍ଵକୁ 14x ଯୋଡନ୍ତୁ.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
ଉଭୟ ପାର୍ଶ୍ୱରୁ 49 ବିୟୋଗ କରନ୍ତୁ.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
-\frac{981}{20} ପ୍ରାପ୍ତ କରିବାକୁ -\frac{1}{20} ଏବଂ 49 ବିୟୋଗ କରନ୍ତୁ.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
m ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -6x^{2}on-x^{3}on ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
-6x^{2}on-x^{3}on ଦ୍ୱାରା ବିଭାଜନ କରିବା -6x^{2}on-x^{3}on ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
m=\frac{-20x^{2}+280x-981}{-20no\left(x+6\right)x^{2}}
-\frac{981}{20}-x^{2}+14x କୁ -6x^{2}on-x^{3}on ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
\left(x-7\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
x^{2} କୁ 6+x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
6x^{2}+x^{3} କୁ m ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
6x^{2}m+x^{3}m କୁ o ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
6x^{2}mo+x^{3}mo କୁ n ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
6x^{2}mon+x^{3}mon ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
ଉଭୟ ପାର୍ଶ୍ଵକୁ 14x ଯୋଡନ୍ତୁ.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
ଉଭୟ ପାର୍ଶ୍ୱରୁ 49 ବିୟୋଗ କରନ୍ତୁ.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
-\frac{981}{20} ପ୍ରାପ୍ତ କରିବାକୁ -\frac{1}{20} ଏବଂ 49 ବିୟୋଗ କରନ୍ତୁ.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
n ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -6x^{2}mo-x^{3}mo ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
-6x^{2}mo-x^{3}mo ଦ୍ୱାରା ବିଭାଜନ କରିବା -6x^{2}mo-x^{3}mo ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
n=\frac{-20x^{2}+280x-981}{-20mo\left(x+6\right)x^{2}}
-\frac{981}{20}-x^{2}+14x କୁ -6x^{2}mo-x^{3}mo ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}