ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

4\left(x-3\right)^{2}=x
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
4\left(x^{2}-6x+9\right)=x
\left(x-3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-24x+36=x
4 କୁ x^{2}-6x+9 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-24x+36-x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-25x+36=0
-25x ପାଇବାକୁ -24x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
a+b=-25 ab=4\times 36=144
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 4x^{2}+ax+bx+36 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 144 ପ୍ରଦାନ କରିଥାଏ.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-16 b=-9
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -25 ପ୍ରଦାନ କରିଥାଏ.
\left(4x^{2}-16x\right)+\left(-9x+36\right)
\left(4x^{2}-16x\right)+\left(-9x+36\right) ଭାବରେ 4x^{2}-25x+36 ପୁନଃ ଲେଖନ୍ତୁ.
4x\left(x-4\right)-9\left(x-4\right)
ପ୍ରଥମଟିରେ 4x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -9 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-4\right)\left(4x-9\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-4 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=4 x=\frac{9}{4}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-4=0 ଏବଂ 4x-9=0 ସମାଧାନ କରନ୍ତୁ.
4\left(x-3\right)^{2}=x
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
4\left(x^{2}-6x+9\right)=x
\left(x-3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-24x+36=x
4 କୁ x^{2}-6x+9 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-24x+36-x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-25x+36=0
-25x ପାଇବାକୁ -24x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 4\times 36}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ -25, ଏବଂ c ପାଇଁ 36 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 4\times 36}}{2\times 4}
ବର୍ଗ -25.
x=\frac{-\left(-25\right)±\sqrt{625-16\times 36}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-25\right)±\sqrt{625-576}}{2\times 4}
-16 କୁ 36 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-25\right)±\sqrt{49}}{2\times 4}
625 କୁ -576 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-25\right)±7}{2\times 4}
49 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{25±7}{2\times 4}
-25 ର ବିପରୀତ ହେଉଛି 25.
x=\frac{25±7}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{32}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{25±7}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 25 କୁ 7 ସହ ଯୋଡନ୍ତୁ.
x=4
32 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{18}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{25±7}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 25 ରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{9}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{18}{8} ହ୍ରାସ କରନ୍ତୁ.
x=4 x=\frac{9}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4\left(x-3\right)^{2}=x
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
4\left(x^{2}-6x+9\right)=x
\left(x-3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-24x+36=x
4 କୁ x^{2}-6x+9 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}-24x+36-x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}-25x+36=0
-25x ପାଇବାକୁ -24x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}-25x=-36
ଉଭୟ ପାର୍ଶ୍ୱରୁ 36 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\frac{4x^{2}-25x}{4}=-\frac{36}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{25}{4}x=-\frac{36}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{25}{4}x=-9
-36 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{25}{4}x+\left(-\frac{25}{8}\right)^{2}=-9+\left(-\frac{25}{8}\right)^{2}
-\frac{25}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{25}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{25}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{25}{4}x+\frac{625}{64}=-9+\frac{625}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{25}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{25}{4}x+\frac{625}{64}=\frac{49}{64}
-9 କୁ \frac{625}{64} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{25}{8}\right)^{2}=\frac{49}{64}
ଗୁଣନୀୟକ x^{2}-\frac{25}{4}x+\frac{625}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{25}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{25}{8}=\frac{7}{8} x-\frac{25}{8}=-\frac{7}{8}
ସରଳୀକୃତ କରିବା.
x=4 x=\frac{9}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{25}{8} ଯୋଡନ୍ତୁ.