x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-3
x=2
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}+x-2+3x=4\left(x-2\right)-\left(x-12\right)
x-1 କୁ x+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+4x-2=4\left(x-2\right)-\left(x-12\right)
4x ପାଇବାକୁ x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+4x-2=4x-8-\left(x-12\right)
4 କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+4x-2=4x-8-x+12
x-12 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
x^{2}+4x-2=3x-8+12
3x ପାଇବାକୁ 4x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+4x-2=3x+4
4 ପ୍ରାପ୍ତ କରିବାକୁ -8 ଏବଂ 12 ଯୋଗ କରନ୍ତୁ.
x^{2}+4x-2-3x=4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x ବିୟୋଗ କରନ୍ତୁ.
x^{2}+x-2=4
x ପାଇବାକୁ 4x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+x-2-4=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+x-6=0
-6 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 1, ଏବଂ c ପାଇଁ -6 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
ବର୍ଗ 1.
x=\frac{-1±\sqrt{1+24}}{2}
-4 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-1±\sqrt{25}}{2}
1 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-1±5}{2}
25 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±5}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -1 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
x=2
4 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{6}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±5}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -1 ରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x=-3
-6 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=2 x=-3
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+x-2+3x=4\left(x-2\right)-\left(x-12\right)
x-1 କୁ x+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+4x-2=4\left(x-2\right)-\left(x-12\right)
4x ପାଇବାକୁ x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+4x-2=4x-8-\left(x-12\right)
4 କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+4x-2=4x-8-x+12
x-12 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
x^{2}+4x-2=3x-8+12
3x ପାଇବାକୁ 4x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+4x-2=3x+4
4 ପ୍ରାପ୍ତ କରିବାକୁ -8 ଏବଂ 12 ଯୋଗ କରନ୍ତୁ.
x^{2}+4x-2-3x=4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x ବିୟୋଗ କରନ୍ତୁ.
x^{2}+x-2=4
x ପାଇବାକୁ 4x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+x=4+2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2 ଯୋଡନ୍ତୁ.
x^{2}+x=6
6 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 1 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
6 କୁ \frac{1}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
ଗୁଣନୀୟକ x^{2}+x+\frac{1}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
ସରଳୀକୃତ କରିବା.
x=2 x=-3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{2} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}