x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{\sqrt{10} + 4}{3} \approx 2.387425887
x=\frac{4-\sqrt{10}}{3}\approx 0.27924078
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x-3x^{2}=-7x+2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x^{2} ବିୟୋଗ କରନ୍ତୁ.
x-3x^{2}+7x=2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 7x ଯୋଡନ୍ତୁ.
8x-3x^{2}=2
8x ପାଇବାକୁ x ଏବଂ 7x ସମ୍ମେଳନ କରନ୍ତୁ.
8x-3x^{2}-2=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
-3x^{2}+8x-2=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -3, b ପାଇଁ 8, ଏବଂ c ପାଇଁ -2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-8±\sqrt{64-4\left(-3\right)\left(-2\right)}}{2\left(-3\right)}
ବର୍ଗ 8.
x=\frac{-8±\sqrt{64+12\left(-2\right)}}{2\left(-3\right)}
-4 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-8±\sqrt{64-24}}{2\left(-3\right)}
12 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-8±\sqrt{40}}{2\left(-3\right)}
64 କୁ -24 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-8±2\sqrt{10}}{2\left(-3\right)}
40 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-8±2\sqrt{10}}{-6}
2 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{10}-8}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-8±2\sqrt{10}}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -8 କୁ 2\sqrt{10} ସହ ଯୋଡନ୍ତୁ.
x=\frac{4-\sqrt{10}}{3}
-8+2\sqrt{10} କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{10}-8}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-8±2\sqrt{10}}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -8 ରୁ 2\sqrt{10} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{10}+4}{3}
-8-2\sqrt{10} କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{4-\sqrt{10}}{3} x=\frac{\sqrt{10}+4}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x-3x^{2}=-7x+2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x^{2} ବିୟୋଗ କରନ୍ତୁ.
x-3x^{2}+7x=2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 7x ଯୋଡନ୍ତୁ.
8x-3x^{2}=2
8x ପାଇବାକୁ x ଏବଂ 7x ସମ୍ମେଳନ କରନ୍ତୁ.
-3x^{2}+8x=2
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-3x^{2}+8x}{-3}=\frac{2}{-3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{8}{-3}x=\frac{2}{-3}
-3 ଦ୍ୱାରା ବିଭାଜନ କରିବା -3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{8}{3}x=\frac{2}{-3}
8 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{8}{3}x=-\frac{2}{3}
2 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=-\frac{2}{3}+\left(-\frac{4}{3}\right)^{2}
-\frac{4}{3} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{8}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{4}{3} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{8}{3}x+\frac{16}{9}=-\frac{2}{3}+\frac{16}{9}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{4}{3} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{10}{9}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{16}{9} ସହିତ -\frac{2}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{4}{3}\right)^{2}=\frac{10}{9}
ଗୁଣନୀୟକ x^{2}-\frac{8}{3}x+\frac{16}{9}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{4}{3}=\frac{\sqrt{10}}{3} x-\frac{4}{3}=-\frac{\sqrt{10}}{3}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{10}+4}{3} x=\frac{4-\sqrt{10}}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{4}{3} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}