x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-10
x=-5
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2x^{2}+17x+35-\left(x+5\right)\left(x-3\right)=0
x+5 କୁ 2x+7 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+17x+35-\left(x^{2}+2x-15\right)=0
x+5 କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+17x+35-x^{2}-2x+15=0
x^{2}+2x-15 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
x^{2}+17x+35-2x+15=0
x^{2} ପାଇବାକୁ 2x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+15x+35+15=0
15x ପାଇବାକୁ 17x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+15x+50=0
50 ପ୍ରାପ୍ତ କରିବାକୁ 35 ଏବଂ 15 ଯୋଗ କରନ୍ତୁ.
a+b=15 ab=50
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ବ୍ୟବହାର କରି x^{2}+15x+50 ର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,50 2,25 5,10
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 50 ପ୍ରଦାନ କରିଥାଏ.
1+50=51 2+25=27 5+10=15
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=5 b=10
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 15 ପ୍ରଦାନ କରିଥାଏ.
\left(x+5\right)\left(x+10\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(x+a\right)\left(x+b\right) ପୁନଃଲେଖନ୍ତୁ.
x=-5 x=-10
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x+5=0 ଏବଂ x+10=0 ସମାଧାନ କରନ୍ତୁ.
2x^{2}+17x+35-\left(x+5\right)\left(x-3\right)=0
x+5 କୁ 2x+7 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+17x+35-\left(x^{2}+2x-15\right)=0
x+5 କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+17x+35-x^{2}-2x+15=0
x^{2}+2x-15 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
x^{2}+17x+35-2x+15=0
x^{2} ପାଇବାକୁ 2x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+15x+35+15=0
15x ପାଇବାକୁ 17x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+15x+50=0
50 ପ୍ରାପ୍ତ କରିବାକୁ 35 ଏବଂ 15 ଯୋଗ କରନ୍ତୁ.
a+b=15 ab=1\times 50=50
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx+50 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,50 2,25 5,10
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 50 ପ୍ରଦାନ କରିଥାଏ.
1+50=51 2+25=27 5+10=15
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=5 b=10
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 15 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}+5x\right)+\left(10x+50\right)
\left(x^{2}+5x\right)+\left(10x+50\right) ଭାବରେ x^{2}+15x+50 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x+5\right)+10\left(x+5\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 10 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x+5\right)\left(x+10\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x+5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=-5 x=-10
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x+5=0 ଏବଂ x+10=0 ସମାଧାନ କରନ୍ତୁ.
2x^{2}+17x+35-\left(x+5\right)\left(x-3\right)=0
x+5 କୁ 2x+7 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+17x+35-\left(x^{2}+2x-15\right)=0
x+5 କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+17x+35-x^{2}-2x+15=0
x^{2}+2x-15 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
x^{2}+17x+35-2x+15=0
x^{2} ପାଇବାକୁ 2x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+15x+35+15=0
15x ପାଇବାକୁ 17x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+15x+50=0
50 ପ୍ରାପ୍ତ କରିବାକୁ 35 ଏବଂ 15 ଯୋଗ କରନ୍ତୁ.
x=\frac{-15±\sqrt{15^{2}-4\times 50}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 15, ଏବଂ c ପାଇଁ 50 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-15±\sqrt{225-4\times 50}}{2}
ବର୍ଗ 15.
x=\frac{-15±\sqrt{225-200}}{2}
-4 କୁ 50 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-15±\sqrt{25}}{2}
225 କୁ -200 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-15±5}{2}
25 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=-\frac{10}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-15±5}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -15 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
x=-5
-10 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{20}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-15±5}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -15 ରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x=-10
-20 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-5 x=-10
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}+17x+35-\left(x+5\right)\left(x-3\right)=0
x+5 କୁ 2x+7 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+17x+35-\left(x^{2}+2x-15\right)=0
x+5 କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+17x+35-x^{2}-2x+15=0
x^{2}+2x-15 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
x^{2}+17x+35-2x+15=0
x^{2} ପାଇବାକୁ 2x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+15x+35+15=0
15x ପାଇବାକୁ 17x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+15x+50=0
50 ପ୍ରାପ୍ତ କରିବାକୁ 35 ଏବଂ 15 ଯୋଗ କରନ୍ତୁ.
x^{2}+15x=-50
ଉଭୟ ପାର୍ଶ୍ୱରୁ 50 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=-50+\left(\frac{15}{2}\right)^{2}
\frac{15}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 15 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{15}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+15x+\frac{225}{4}=-50+\frac{225}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{15}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+15x+\frac{225}{4}=\frac{25}{4}
-50 କୁ \frac{225}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{15}{2}\right)^{2}=\frac{25}{4}
ଗୁଣନୀୟକ x^{2}+15x+\frac{225}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{15}{2}=\frac{5}{2} x+\frac{15}{2}=-\frac{5}{2}
ସରଳୀକୃତ କରିବା.
x=-5 x=-10
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{15}{2} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}