ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-9=5
\left(x+3\right)\left(x-3\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ. ବର୍ଗ 3.
x^{2}=5+9
ଉଭୟ ପାର୍ଶ୍ଵକୁ 9 ଯୋଡନ୍ତୁ.
x^{2}=14
14 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 9 ଯୋଗ କରନ୍ତୁ.
x=\sqrt{14} x=-\sqrt{14}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x^{2}-9=5
\left(x+3\right)\left(x-3\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ. ବର୍ଗ 3.
x^{2}-9-5=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-14=0
-14 ପ୍ରାପ୍ତ କରିବାକୁ -9 ଏବଂ 5 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{0±\sqrt{0^{2}-4\left(-14\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 0, ଏବଂ c ପାଇଁ -14 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{0±\sqrt{-4\left(-14\right)}}{2}
ବର୍ଗ 0.
x=\frac{0±\sqrt{56}}{2}
-4 କୁ -14 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{0±2\sqrt{14}}{2}
56 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\sqrt{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{0±2\sqrt{14}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ.
x=-\sqrt{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{0±2\sqrt{14}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ.
x=\sqrt{14} x=-\sqrt{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.