ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+4x+3=2x+7
x+3 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+4x+3-2x=7
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+3=7
2x ପାଇବାକୁ 4x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+2x+3-7=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x-4=0
-4 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 7 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
ବର୍ଗ 2.
x=\frac{-2±\sqrt{4+16}}{2}
-4 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{20}}{2}
4 କୁ 16 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2±2\sqrt{5}}{2}
20 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2\sqrt{5}-2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{5}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2\sqrt{5} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{5}-1
-2+2\sqrt{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{5}-2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{5}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2\sqrt{5} ବିୟୋଗ କରନ୍ତୁ.
x=-\sqrt{5}-1
-2-2\sqrt{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{5}-1 x=-\sqrt{5}-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+4x+3=2x+7
x+3 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+4x+3-2x=7
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+3=7
2x ପାଇବାକୁ 4x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+2x=7-3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x=4
4 ପ୍ରାପ୍ତ କରିବାକୁ 7 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+1^{2}=4+1^{2}
1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+2x+1=4+1
ବର୍ଗ 1.
x^{2}+2x+1=5
4 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x+1\right)^{2}=5
ଗୁଣନୀୟକ x^{2}+2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+1=\sqrt{5} x+1=-\sqrt{5}
ସରଳୀକୃତ କରିବା.
x=\sqrt{5}-1 x=-\sqrt{5}-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+4x+3=2x+7
x+3 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+4x+3-2x=7
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+3=7
2x ପାଇବାକୁ 4x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+2x+3-7=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x-4=0
-4 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 7 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
ବର୍ଗ 2.
x=\frac{-2±\sqrt{4+16}}{2}
-4 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{20}}{2}
4 କୁ 16 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2±2\sqrt{5}}{2}
20 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2\sqrt{5}-2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{5}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2\sqrt{5} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{5}-1
-2+2\sqrt{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{5}-2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{5}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2\sqrt{5} ବିୟୋଗ କରନ୍ତୁ.
x=-\sqrt{5}-1
-2-2\sqrt{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{5}-1 x=-\sqrt{5}-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+4x+3=2x+7
x+3 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+4x+3-2x=7
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+3=7
2x ପାଇବାକୁ 4x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+2x=7-3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x=4
4 ପ୍ରାପ୍ତ କରିବାକୁ 7 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x+1^{2}=4+1^{2}
1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+2x+1=4+1
ବର୍ଗ 1.
x^{2}+2x+1=5
4 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x+1\right)^{2}=5
ଗୁଣନୀୟକ x^{2}+2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+1=\sqrt{5} x+1=-\sqrt{5}
ସରଳୀକୃତ କରିବା.
x=\sqrt{5}-1 x=-\sqrt{5}-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.