ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x^{2}+7x+3=9
x+3 କୁ 2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+7x+3-9=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+7x-6=0
-6 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 9 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-6\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ 7, ଏବଂ c ପାଇଁ -6 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49-4\times 2\left(-6\right)}}{2\times 2}
ବର୍ଗ 7.
x=\frac{-7±\sqrt{49-8\left(-6\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49+48}}{2\times 2}
-8 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{97}}{2\times 2}
49 କୁ 48 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-7±\sqrt{97}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{97}-7}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±\sqrt{97}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -7 କୁ \sqrt{97} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{97}-7}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±\sqrt{97}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -7 ରୁ \sqrt{97} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{97}-7}{4} x=\frac{-\sqrt{97}-7}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}+7x+3=9
x+3 କୁ 2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+7x=9-3
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+7x=6
6 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
\frac{2x^{2}+7x}{2}=\frac{6}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{2}x=\frac{6}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{7}{2}x=3
6 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=3+\left(\frac{7}{4}\right)^{2}
\frac{7}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{7}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{7}{2}x+\frac{49}{16}=3+\frac{49}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{97}{16}
3 କୁ \frac{49}{16} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{7}{4}\right)^{2}=\frac{97}{16}
ଗୁଣନୀୟକ x^{2}+\frac{7}{2}x+\frac{49}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{97}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{7}{4}=\frac{\sqrt{97}}{4} x+\frac{7}{4}=-\frac{\sqrt{97}}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{97}-7}{4} x=\frac{-\sqrt{97}-7}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{4} ବିୟୋଗ କରନ୍ତୁ.