x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x\in \begin{bmatrix}-\sqrt{2},\sqrt{2}\end{bmatrix}
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}+2x+1-2\left(x+1\right)-1\leq 0
\left(x+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2x+1-2x-2-1\leq 0
-2 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+1-2-1\leq 0
0 ପାଇବାକୁ 2x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-1-1\leq 0
-1 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-2\leq 0
-2 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
x^{2}\leq 2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2 ଯୋଡନ୍ତୁ.
x^{2}\leq \left(\sqrt{2}\right)^{2}
2 ର ଚତୁର୍ଭୁଜ ମୂଳ ଗଣନା କରନ୍ତୁ ଏବଂ \sqrt{2} ପ୍ରାପ୍ତ କରନ୍ତୁ. \left(\sqrt{2}\right)^{2} ଭାବରେ 2 ପୁନଃ ଲେଖନ୍ତୁ.
|x|\leq \sqrt{2}
|x|\leq \sqrt{2} ପାଇଁ ଅସମତା ଧାରଣ କରେ.
x\in \begin{bmatrix}-\sqrt{2},\sqrt{2}\end{bmatrix}
x\in \left[-\sqrt{2},\sqrt{2}\right] ଭାବରେ |x|\leq \sqrt{2} ପୁନଃ ଲେଖନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}