ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ପ୍ରସାରଣ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(x^{2}+2x+1\right)\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
\left(x+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
\left(x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x^{2}+2x+1 କୁ x-\left(1-3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right) କୁ x-\left(1+3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1-3i ଗୁଣନ କରନ୍ତୁ.
x^{2}\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1-3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1+3i ଗୁଣନ କରନ୍ତୁ.
\left(x^{3}+\left(-1+3i\right)x^{2}\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x^{2} କୁ x+\left(-1+3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{4}-2x^{3}+10x^{2}+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x^{3}+\left(-1+3i\right)x^{2} କୁ x+\left(-1-3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1-3i ଗୁଣନ କରନ୍ତୁ.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1-3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1+3i ଗୁଣନ କରନ୍ତୁ.
x^{4}-2x^{3}+10x^{2}+\left(2x^{2}+\left(-2+6i\right)x\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
2x କୁ x+\left(-1+3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{4}-2x^{3}+10x^{2}+2x^{3}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
2x^{2}+\left(-2+6i\right)x କୁ x+\left(-1-3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}+10x^{2}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
0 ପାଇବାକୁ -2x^{3} ଏବଂ 2x^{3} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}+6x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
6x^{2} ପାଇବାକୁ 10x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1-3i ଗୁଣନ କରନ୍ତୁ.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)
-1-3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1+3i ଗୁଣନ କରନ୍ତୁ.
x^{4}+6x^{2}+20x+x^{2}-2x+10
x+\left(-1+3i\right) କୁ x+\left(-1-3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}+7x^{2}+20x-2x+10
7x^{2} ପାଇବାକୁ 6x^{2} ଏବଂ x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}+7x^{2}+18x+10
18x ପାଇବାକୁ 20x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
\left(x^{2}+2x+1\right)\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
\left(x+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
\left(x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x^{2}+2x+1 କୁ x-\left(1-3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x^{2}\left(x-\left(1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)+x-\left(1-3i\right) କୁ x-\left(1+3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1-3i ଗୁଣନ କରନ୍ତୁ.
x^{2}\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1-3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1+3i ଗୁଣନ କରନ୍ତୁ.
\left(x^{3}+\left(-1+3i\right)x^{2}\right)\left(x+\left(-1-3i\right)\right)+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x^{2} କୁ x+\left(-1+3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{4}-2x^{3}+10x^{2}+2x\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
x^{3}+\left(-1+3i\right)x^{2} କୁ x+\left(-1-3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1-3i ଗୁଣନ କରନ୍ତୁ.
x^{4}-2x^{3}+10x^{2}+2x\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
-1-3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1+3i ଗୁଣନ କରନ୍ତୁ.
x^{4}-2x^{3}+10x^{2}+\left(2x^{2}+\left(-2+6i\right)x\right)\left(x+\left(-1-3i\right)\right)+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
2x କୁ x+\left(-1+3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{4}-2x^{3}+10x^{2}+2x^{3}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
2x^{2}+\left(-2+6i\right)x କୁ x+\left(-1-3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}+10x^{2}-4x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
0 ପାଇବାକୁ -2x^{3} ଏବଂ 2x^{3} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}+6x^{2}+20x+\left(x-\left(1-3i\right)\right)\left(x-\left(1+3i\right)\right)
6x^{2} ପାଇବାକୁ 10x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x-\left(1+3i\right)\right)
-1+3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1-3i ଗୁଣନ କରନ୍ତୁ.
x^{4}+6x^{2}+20x+\left(x+\left(-1+3i\right)\right)\left(x+\left(-1-3i\right)\right)
-1-3i ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 1+3i ଗୁଣନ କରନ୍ତୁ.
x^{4}+6x^{2}+20x+x^{2}-2x+10
x+\left(-1+3i\right) କୁ x+\left(-1-3i\right) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}+7x^{2}+20x-2x+10
7x^{2} ପାଇବାକୁ 6x^{2} ଏବଂ x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{4}+7x^{2}+18x+10
18x ପାଇବାକୁ 20x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.