ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+2x+1=5+2x\left(x-1\right)
\left(x+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2x+1=5+2x^{2}-2x
2x କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2x+1-5=2x^{2}-2x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x-4=2x^{2}-2x
-4 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 5 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x-4-2x^{2}=-2x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
-x^{2}+2x-4=-2x
-x^{2} ପାଇବାକୁ x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-x^{2}+2x-4+2x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2x ଯୋଡନ୍ତୁ.
-x^{2}+4x-4=0
4x ପାଇବାକୁ 2x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
a+b=4 ab=-\left(-4\right)=4
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -x^{2}+ax+bx-4 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,4 2,2
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 4 ପ୍ରଦାନ କରିଥାଏ.
1+4=5 2+2=4
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=2 b=2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 4 ପ୍ରଦାନ କରିଥାଏ.
\left(-x^{2}+2x\right)+\left(2x-4\right)
\left(-x^{2}+2x\right)+\left(2x-4\right) ଭାବରେ -x^{2}+4x-4 ପୁନଃ ଲେଖନ୍ତୁ.
-x\left(x-2\right)+2\left(x-2\right)
ପ୍ରଥମଟିରେ -x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-2\right)\left(-x+2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=2 x=2
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-2=0 ଏବଂ -x+2=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}+2x+1=5+2x\left(x-1\right)
\left(x+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2x+1=5+2x^{2}-2x
2x କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2x+1-5=2x^{2}-2x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x-4=2x^{2}-2x
-4 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 5 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+2x-4-2x^{2}=-2x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
-x^{2}+2x-4=-2x
-x^{2} ପାଇବାକୁ x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-x^{2}+2x-4+2x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2x ଯୋଡନ୍ତୁ.
-x^{2}+4x-4=0
4x ପାଇବାକୁ 2x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 4, ଏବଂ c ପାଇଁ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-4±\sqrt{16-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
ବର୍ଗ 4.
x=\frac{-4±\sqrt{16+4\left(-4\right)}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-4±\sqrt{16-16}}{2\left(-1\right)}
4 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-4±\sqrt{0}}{2\left(-1\right)}
16 କୁ -16 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{4}{2\left(-1\right)}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=-\frac{4}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=2
-4 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+2x+1=5+2x\left(x-1\right)
\left(x+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2x+1=5+2x^{2}-2x
2x କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+2x+1-2x^{2}=5-2x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
-x^{2}+2x+1=5-2x
-x^{2} ପାଇବାକୁ x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-x^{2}+2x+1+2x=5
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2x ଯୋଡନ୍ତୁ.
-x^{2}+4x+1=5
4x ପାଇବାକୁ 2x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
-x^{2}+4x=5-1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
-x^{2}+4x=4
4 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
\frac{-x^{2}+4x}{-1}=\frac{4}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{4}{-1}x=\frac{4}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-4x=\frac{4}{-1}
4 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-4x=-4
4 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
-2 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -4 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -2 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-4x+4=-4+4
ବର୍ଗ -2.
x^{2}-4x+4=0
-4 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
\left(x-2\right)^{2}=0
ଗୁଣନୀୟକ x^{2}-4x+4. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-2=0 x-2=0
ସରଳୀକୃତ କରିବା.
x=2 x=2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
x=2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି. ସମାଧାନଗୁଡିକ ସମାନ ଅଛି.