k ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
x\neq \frac{-1+\sqrt{3}i}{2}\text{ and }x\neq \frac{-\sqrt{3}i-1}{2}
k ପାଇଁ ସମାଧାନ କରନ୍ତୁ
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}x=\frac{\sqrt{9+2k-3k^{2}}-k-3}{2\left(k+1\right)}\text{; }x=-\frac{\sqrt{9+2k-3k^{2}}+k+3}{2\left(k+1\right)}\text{, }&k\neq -1\\x=\frac{1}{2}\text{, }&k=-1\end{matrix}\right.
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}x=\frac{\sqrt{9+2k-3k^{2}}-k-3}{2\left(k+1\right)}\text{; }x=-\frac{\sqrt{9+2k-3k^{2}}+k+3}{2\left(k+1\right)}\text{, }&k\neq -1\text{ and }k\geq \frac{1-2\sqrt{7}}{3}\text{ and }k\leq \frac{2\sqrt{7}+1}{3}\\x=\frac{1}{2}\text{, }&k=-1\end{matrix}\right.
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
kx^{2}+x^{2}+\left(k+3\right)x+k=0
k+1 କୁ x^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
kx^{2}+x^{2}+kx+3x+k=0
k+3 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
kx^{2}+kx+3x+k=-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
kx^{2}+kx+k=-x^{2}-3x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x ବିୟୋଗ କରନ୍ତୁ.
\left(x^{2}+x+1\right)k=-x^{2}-3x
k ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(x^{2}+x+1\right)k}{x^{2}+x+1}=-\frac{x\left(x+3\right)}{x^{2}+x+1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ x^{2}+x+1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
x^{2}+x+1 ଦ୍ୱାରା ବିଭାଜନ କରିବା x^{2}+x+1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
kx^{2}+x^{2}+\left(k+3\right)x+k=0
k+1 କୁ x^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
kx^{2}+x^{2}+kx+3x+k=0
k+3 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
kx^{2}+kx+3x+k=-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
kx^{2}+kx+k=-x^{2}-3x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x ବିୟୋଗ କରନ୍ତୁ.
\left(x^{2}+x+1\right)k=-x^{2}-3x
k ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(x^{2}+x+1\right)k}{x^{2}+x+1}=-\frac{x\left(x+3\right)}{x^{2}+x+1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ x^{2}+x+1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
k=-\frac{x\left(x+3\right)}{x^{2}+x+1}
x^{2}+x+1 ଦ୍ୱାରା ବିଭାଜନ କରିବା x^{2}+x+1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}