x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{13}{5} = 2\frac{3}{5} = 2.6
x=-1
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
25x^{2}-40x+16=81
\left(5x-4\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
25x^{2}-40x+16-81=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 81 ବିୟୋଗ କରନ୍ତୁ.
25x^{2}-40x-65=0
-65 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 81 ବିୟୋଗ କରନ୍ତୁ.
5x^{2}-8x-13=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a+b=-8 ab=5\left(-13\right)=-65
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 5x^{2}+ax+bx-13 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-65 5,-13
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -65 ପ୍ରଦାନ କରିଥାଏ.
1-65=-64 5-13=-8
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-13 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -8 ପ୍ରଦାନ କରିଥାଏ.
\left(5x^{2}-13x\right)+\left(5x-13\right)
\left(5x^{2}-13x\right)+\left(5x-13\right) ଭାବରେ 5x^{2}-8x-13 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(5x-13\right)+5x-13
5x^{2}-13xରେ x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(5x-13\right)\left(x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 5x-13 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{13}{5} x=-1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 5x-13=0 ଏବଂ x+1=0 ସମାଧାନ କରନ୍ତୁ.
25x^{2}-40x+16=81
\left(5x-4\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
25x^{2}-40x+16-81=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 81 ବିୟୋଗ କରନ୍ତୁ.
25x^{2}-40x-65=0
-65 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 81 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 25\left(-65\right)}}{2\times 25}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 25, b ପାଇଁ -40, ଏବଂ c ପାଇଁ -65 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 25\left(-65\right)}}{2\times 25}
ବର୍ଗ -40.
x=\frac{-\left(-40\right)±\sqrt{1600-100\left(-65\right)}}{2\times 25}
-4 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-40\right)±\sqrt{1600+6500}}{2\times 25}
-100 କୁ -65 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-40\right)±\sqrt{8100}}{2\times 25}
1600 କୁ 6500 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-40\right)±90}{2\times 25}
8100 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{40±90}{2\times 25}
-40 ର ବିପରୀତ ହେଉଛି 40.
x=\frac{40±90}{50}
2 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{130}{50}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{40±90}{50} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 40 କୁ 90 ସହ ଯୋଡନ୍ତୁ.
x=\frac{13}{5}
10 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{130}{50} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{50}{50}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{40±90}{50} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 40 ରୁ 90 ବିୟୋଗ କରନ୍ତୁ.
x=-1
-50 କୁ 50 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{13}{5} x=-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
25x^{2}-40x+16=81
\left(5x-4\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
25x^{2}-40x=81-16
ଉଭୟ ପାର୍ଶ୍ୱରୁ 16 ବିୟୋଗ କରନ୍ତୁ.
25x^{2}-40x=65
65 ପ୍ରାପ୍ତ କରିବାକୁ 81 ଏବଂ 16 ବିୟୋଗ କରନ୍ତୁ.
\frac{25x^{2}-40x}{25}=\frac{65}{25}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 25 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{40}{25}\right)x=\frac{65}{25}
25 ଦ୍ୱାରା ବିଭାଜନ କରିବା 25 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{8}{5}x=\frac{65}{25}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-40}{25} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{8}{5}x=\frac{13}{5}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{65}{25} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=\frac{13}{5}+\left(-\frac{4}{5}\right)^{2}
-\frac{4}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{8}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{4}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{13}{5}+\frac{16}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{4}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{81}{25}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{16}{25} ସହିତ \frac{13}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{4}{5}\right)^{2}=\frac{81}{25}
ଗୁଣନୀୟକ x^{2}-\frac{8}{5}x+\frac{16}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{\frac{81}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{4}{5}=\frac{9}{5} x-\frac{4}{5}=-\frac{9}{5}
ସରଳୀକୃତ କରିବା.
x=\frac{13}{5} x=-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{4}{5} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}