x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{1}{4}=0.25
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
9x^{2}-24x+16-\left(x+3\right)^{2}=0
\left(3x-4\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
\left(x+3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-24x+16-x^{2}-6x-9=0
x^{2}+6x+9 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
8x^{2}-24x+16-6x-9=0
8x^{2} ପାଇବାକୁ 9x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
8x^{2}-30x+16-9=0
-30x ପାଇବାକୁ -24x ଏବଂ -6x ସମ୍ମେଳନ କରନ୍ତୁ.
8x^{2}-30x+7=0
7 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 9 ବିୟୋଗ କରନ୍ତୁ.
a+b=-30 ab=8\times 7=56
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 8x^{2}+ax+bx+7 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-56 -2,-28 -4,-14 -7,-8
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 56 ପ୍ରଦାନ କରିଥାଏ.
-1-56=-57 -2-28=-30 -4-14=-18 -7-8=-15
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-28 b=-2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -30 ପ୍ରଦାନ କରିଥାଏ.
\left(8x^{2}-28x\right)+\left(-2x+7\right)
\left(8x^{2}-28x\right)+\left(-2x+7\right) ଭାବରେ 8x^{2}-30x+7 ପୁନଃ ଲେଖନ୍ତୁ.
4x\left(2x-7\right)-\left(2x-7\right)
ପ୍ରଥମଟିରେ 4x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -1 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x-7\right)\left(4x-1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x-7 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{7}{2} x=\frac{1}{4}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2x-7=0 ଏବଂ 4x-1=0 ସମାଧାନ କରନ୍ତୁ.
9x^{2}-24x+16-\left(x+3\right)^{2}=0
\left(3x-4\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
\left(x+3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-24x+16-x^{2}-6x-9=0
x^{2}+6x+9 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
8x^{2}-24x+16-6x-9=0
8x^{2} ପାଇବାକୁ 9x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
8x^{2}-30x+16-9=0
-30x ପାଇବାକୁ -24x ଏବଂ -6x ସମ୍ମେଳନ କରନ୍ତୁ.
8x^{2}-30x+7=0
7 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 9 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 8\times 7}}{2\times 8}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 8, b ପାଇଁ -30, ଏବଂ c ପାଇଁ 7 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 8\times 7}}{2\times 8}
ବର୍ଗ -30.
x=\frac{-\left(-30\right)±\sqrt{900-32\times 7}}{2\times 8}
-4 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-30\right)±\sqrt{900-224}}{2\times 8}
-32 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-30\right)±\sqrt{676}}{2\times 8}
900 କୁ -224 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-30\right)±26}{2\times 8}
676 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{30±26}{2\times 8}
-30 ର ବିପରୀତ ହେଉଛି 30.
x=\frac{30±26}{16}
2 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{56}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{30±26}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 30 କୁ 26 ସହ ଯୋଡନ୍ତୁ.
x=\frac{7}{2}
8 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{56}{16} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{4}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{30±26}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 30 ରୁ 26 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1}{4}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{4}{16} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{7}{2} x=\frac{1}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
9x^{2}-24x+16-\left(x+3\right)^{2}=0
\left(3x-4\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-24x+16-\left(x^{2}+6x+9\right)=0
\left(x+3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-24x+16-x^{2}-6x-9=0
x^{2}+6x+9 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
8x^{2}-24x+16-6x-9=0
8x^{2} ପାଇବାକୁ 9x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
8x^{2}-30x+16-9=0
-30x ପାଇବାକୁ -24x ଏବଂ -6x ସମ୍ମେଳନ କରନ୍ତୁ.
8x^{2}-30x+7=0
7 ପ୍ରାପ୍ତ କରିବାକୁ 16 ଏବଂ 9 ବିୟୋଗ କରନ୍ତୁ.
8x^{2}-30x=-7
ଉଭୟ ପାର୍ଶ୍ୱରୁ 7 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\frac{8x^{2}-30x}{8}=-\frac{7}{8}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{30}{8}\right)x=-\frac{7}{8}
8 ଦ୍ୱାରା ବିଭାଜନ କରିବା 8 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{15}{4}x=-\frac{7}{8}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-30}{8} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{15}{4}x+\left(-\frac{15}{8}\right)^{2}=-\frac{7}{8}+\left(-\frac{15}{8}\right)^{2}
-\frac{15}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{15}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{15}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{15}{4}x+\frac{225}{64}=-\frac{7}{8}+\frac{225}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{15}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{169}{64}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{225}{64} ସହିତ -\frac{7}{8} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{15}{8}\right)^{2}=\frac{169}{64}
ଗୁଣନୀୟକ x^{2}-\frac{15}{4}x+\frac{225}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{15}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{15}{8}=\frac{13}{8} x-\frac{15}{8}=-\frac{13}{8}
ସରଳୀକୃତ କରିବା.
x=\frac{7}{2} x=\frac{1}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{15}{8} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}