ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

9x^{2}-6x+1=4\left(1-x\right)^{2}
\left(3x-1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-6x+1=4\left(1-2x+x^{2}\right)
\left(1-x\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-6x+1=4-8x+4x^{2}
4 କୁ 1-2x+x^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-6x+1-4=-8x+4x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
9x^{2}-6x-3=-8x+4x^{2}
-3 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
9x^{2}-6x-3+8x=4x^{2}
ଉଭୟ ପାର୍ଶ୍ଵକୁ 8x ଯୋଡନ୍ତୁ.
9x^{2}+2x-3=4x^{2}
2x ପାଇବାକୁ -6x ଏବଂ 8x ସମ୍ମେଳନ କରନ୍ତୁ.
9x^{2}+2x-3-4x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x^{2} ବିୟୋଗ କରନ୍ତୁ.
5x^{2}+2x-3=0
5x^{2} ପାଇବାକୁ 9x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
a+b=2 ab=5\left(-3\right)=-15
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 5x^{2}+ax+bx-3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,15 -3,5
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -15 ପ୍ରଦାନ କରିଥାଏ.
-1+15=14 -3+5=2
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-3 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 2 ପ୍ରଦାନ କରିଥାଏ.
\left(5x^{2}-3x\right)+\left(5x-3\right)
\left(5x^{2}-3x\right)+\left(5x-3\right) ଭାବରେ 5x^{2}+2x-3 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(5x-3\right)+5x-3
5x^{2}-3xରେ x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(5x-3\right)\left(x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 5x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{3}{5} x=-1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 5x-3=0 ଏବଂ x+1=0 ସମାଧାନ କରନ୍ତୁ.
9x^{2}-6x+1=4\left(1-x\right)^{2}
\left(3x-1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-6x+1=4\left(1-2x+x^{2}\right)
\left(1-x\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-6x+1=4-8x+4x^{2}
4 କୁ 1-2x+x^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-6x+1-4=-8x+4x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
9x^{2}-6x-3=-8x+4x^{2}
-3 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
9x^{2}-6x-3+8x=4x^{2}
ଉଭୟ ପାର୍ଶ୍ଵକୁ 8x ଯୋଡନ୍ତୁ.
9x^{2}+2x-3=4x^{2}
2x ପାଇବାକୁ -6x ଏବଂ 8x ସମ୍ମେଳନ କରନ୍ତୁ.
9x^{2}+2x-3-4x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x^{2} ବିୟୋଗ କରନ୍ତୁ.
5x^{2}+2x-3=0
5x^{2} ପାଇବାକୁ 9x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{2^{2}-4\times 5\left(-3\right)}}{2\times 5}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 5, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-4\times 5\left(-3\right)}}{2\times 5}
ବର୍ଗ 2.
x=\frac{-2±\sqrt{4-20\left(-3\right)}}{2\times 5}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4+60}}{2\times 5}
-20 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{64}}{2\times 5}
4 କୁ 60 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2±8}{2\times 5}
64 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-2±8}{10}
2 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{6}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±8}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 8 ସହ ଯୋଡନ୍ତୁ.
x=\frac{3}{5}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{6}{10} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{10}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±8}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
x=-1
-10 କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{3}{5} x=-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
9x^{2}-6x+1=4\left(1-x\right)^{2}
\left(3x-1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-6x+1=4\left(1-2x+x^{2}\right)
\left(1-x\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-6x+1=4-8x+4x^{2}
4 କୁ 1-2x+x^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
9x^{2}-6x+1+8x=4+4x^{2}
ଉଭୟ ପାର୍ଶ୍ଵକୁ 8x ଯୋଡନ୍ତୁ.
9x^{2}+2x+1=4+4x^{2}
2x ପାଇବାକୁ -6x ଏବଂ 8x ସମ୍ମେଳନ କରନ୍ତୁ.
9x^{2}+2x+1-4x^{2}=4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x^{2} ବିୟୋଗ କରନ୍ତୁ.
5x^{2}+2x+1=4
5x^{2} ପାଇବାକୁ 9x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
5x^{2}+2x=4-1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
5x^{2}+2x=3
3 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
\frac{5x^{2}+2x}{5}=\frac{3}{5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{2}{5}x=\frac{3}{5}
5 ଦ୍ୱାରା ବିଭାଜନ କରିବା 5 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=\frac{3}{5}+\left(\frac{1}{5}\right)^{2}
\frac{1}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{2}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{3}{5}+\frac{1}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{16}{25}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{25} ସହିତ \frac{3}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{1}{5}\right)^{2}=\frac{16}{25}
ଗୁଣନୀୟକ x^{2}+\frac{2}{5}x+\frac{1}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{\frac{16}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{5}=\frac{4}{5} x+\frac{1}{5}=-\frac{4}{5}
ସରଳୀକୃତ କରିବା.
x=\frac{3}{5} x=-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{5} ବିୟୋଗ କରନ୍ତୁ.