x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=1
x=-1
x=-\sqrt{2}i\approx -0-1.414213562i
x=\sqrt{2}i\approx 1.414213562i
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-1
x=1
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
4\left(x^{2}\right)^{2}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
\left(2x^{2}+2\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{4}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 4 ପାଇବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
4x^{4}+8x^{2}+4-4x^{2}-4-8=0
-2 କୁ 2x^{2}+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{4}+4x^{2}+4-4-8=0
4x^{2} ପାଇବାକୁ 8x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{4}+4x^{2}-8=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
4t^{2}+4t-8=0
x^{2} ସ୍ଥାନରେ t ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 4, b ପାଇଁ 4, ଏବଂ c ପାଇଁ -8 କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-4±12}{8}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
t=1 t=-2
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ t=\frac{-4±12}{8} ସମାଧାନ କରନ୍ତୁ.
x=-1 x=1 x=-\sqrt{2}i x=\sqrt{2}i
x=t^{2} ପର ଠାରୁ, ସମାଧାନଗୁଡିକ ପ୍ରତି t ପାଇଁ x=±\sqrt{t} ମୂଲ୍ୟାୟନ କରିବା ଦ୍ୱାରା ପ୍ରାପ୍ତ କରାଯାଇଛି.
4\left(x^{2}\right)^{2}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
\left(2x^{2}+2\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{4}+8x^{2}+4-2\left(2x^{2}+2\right)-8=0
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 4 ପାଇବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
4x^{4}+8x^{2}+4-4x^{2}-4-8=0
-2 କୁ 2x^{2}+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{4}+4x^{2}+4-4-8=0
4x^{2} ପାଇବାକୁ 8x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{4}+4x^{2}-8=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
4t^{2}+4t-8=0
x^{2} ସ୍ଥାନରେ t ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 4, b ପାଇଁ 4, ଏବଂ c ପାଇଁ -8 କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-4±12}{8}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
t=1 t=-2
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ t=\frac{-4±12}{8} ସମାଧାନ କରନ୍ତୁ.
x=1 x=-1
x=t^{2} ପର ଠାରୁ, ସମାଧାନଗୁଡିକ ପଜିଟିଭ୍ t ପାଇଁ x=±\sqrt{t} ମୂଲ୍ୟାୟନ କରିବା ଦ୍ୱାରା ପ୍ରାପ୍ତ କରାଯାଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}