ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ପ୍ରସାରଣ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
2x+\frac{1}{3}y ର ପ୍ରତିଟି ପଦକୁ x-3y ର ପ୍ରତିଟି ପଦ ଦ୍ୱାରା ଗୁଣନ କରି ବିତରଣ ସଂକ୍ରାଣ ଗୁଣଧର୍ମ ପ୍ରୟୋଗ କରନ୍ତୁ.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
y^{2} ପ୍ରାପ୍ତ କରିବାକୁ y ଏବଂ y ଗୁଣନ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
-\frac{17}{3}xy ପାଇବାକୁ -6xy ଏବଂ \frac{1}{3}yx ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
\frac{-3}{3} ପ୍ରାପ୍ତ କରିବାକୁ \frac{1}{3} ଏବଂ -3 ଗୁଣନ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
-1 ପ୍ରାପ୍ତ କରିବାକୁ -3 କୁ 3 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
2x+y ର ପ୍ରତିଟି ପଦକୁ \frac{1}{2}x-y ର ପ୍ରତିଟି ପଦ ଦ୍ୱାରା ଗୁଣନ କରି ବିତରଣ ସଂକ୍ରାଣ ଗୁଣଧର୍ମ ପ୍ରୟୋଗ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
2 ଏବଂ 2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
-\frac{3}{2}xy ପାଇବାକୁ -2xy ଏବଂ y\times \frac{1}{2}x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
x^{2}-\frac{3}{2}xy-y^{2} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
-\frac{3}{2}xy ର ବିପରୀତ ହେଉଛି \frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
-y^{2} ର ବିପରୀତ ହେଉଛି y^{2}.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
x^{2} ପାଇବାକୁ 2x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
-\frac{25}{6}xy ପାଇବାକୁ -\frac{17}{3}xy ଏବଂ \frac{3}{2}xy ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-\frac{25}{6}xy
0 ପାଇବାକୁ -y^{2} ଏବଂ y^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
2x+\frac{1}{3}y ର ପ୍ରତିଟି ପଦକୁ x-3y ର ପ୍ରତିଟି ପଦ ଦ୍ୱାରା ଗୁଣନ କରି ବିତରଣ ସଂକ୍ରାଣ ଗୁଣଧର୍ମ ପ୍ରୟୋଗ କରନ୍ତୁ.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
y^{2} ପ୍ରାପ୍ତ କରିବାକୁ y ଏବଂ y ଗୁଣନ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
-\frac{17}{3}xy ପାଇବାକୁ -6xy ଏବଂ \frac{1}{3}yx ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
\frac{-3}{3} ପ୍ରାପ୍ତ କରିବାକୁ \frac{1}{3} ଏବଂ -3 ଗୁଣନ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
-1 ପ୍ରାପ୍ତ କରିବାକୁ -3 କୁ 3 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
2x+y ର ପ୍ରତିଟି ପଦକୁ \frac{1}{2}x-y ର ପ୍ରତିଟି ପଦ ଦ୍ୱାରା ଗୁଣନ କରି ବିତରଣ ସଂକ୍ରାଣ ଗୁଣଧର୍ମ ପ୍ରୟୋଗ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
2 ଏବଂ 2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
-\frac{3}{2}xy ପାଇବାକୁ -2xy ଏବଂ y\times \frac{1}{2}x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
x^{2}-\frac{3}{2}xy-y^{2} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
-\frac{3}{2}xy ର ବିପରୀତ ହେଉଛି \frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
-y^{2} ର ବିପରୀତ ହେଉଛି y^{2}.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
x^{2} ପାଇବାକୁ 2x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
-\frac{25}{6}xy ପାଇବାକୁ -\frac{17}{3}xy ଏବଂ \frac{3}{2}xy ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}-\frac{25}{6}xy
0 ପାଇବାକୁ -y^{2} ଏବଂ y^{2} ସମ୍ମେଳନ କରନ୍ତୁ.