ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(1.4+2x\right)\left(x-0.5\right)\times \frac{1}{2}=4.05
2x ପାଇବାକୁ x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
\left(0.4x-0.7+2x^{2}\right)\times \frac{1}{2}=4.05
1.4+2x କୁ x-0.5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{1}{5}x-\frac{7}{20}+x^{2}=4.05
0.4x-0.7+2x^{2} କୁ \frac{1}{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{1}{5}x-\frac{7}{20}+x^{2}-4.05=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4.05 ବିୟୋଗ କରନ୍ତୁ.
\frac{1}{5}x-\frac{22}{5}+x^{2}=0
-\frac{22}{5} ପ୍ରାପ୍ତ କରିବାକୁ -\frac{7}{20} ଏବଂ 4.05 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+\frac{1}{5}x-\frac{22}{5}=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\frac{1}{5}±\sqrt{\left(\frac{1}{5}\right)^{2}-4\left(-\frac{22}{5}\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ \frac{1}{5}, ଏବଂ c ପାଇଁ -\frac{22}{5} ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\frac{1}{5}±\sqrt{\frac{1}{25}-4\left(-\frac{22}{5}\right)}}{2}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x=\frac{-\frac{1}{5}±\sqrt{\frac{1}{25}+\frac{88}{5}}}{2}
-4 କୁ -\frac{22}{5} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\frac{1}{5}±\sqrt{\frac{441}{25}}}{2}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{88}{5} ସହିତ \frac{1}{25} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=\frac{-\frac{1}{5}±\frac{21}{5}}{2}
\frac{441}{25} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-\frac{1}{5}±\frac{21}{5}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{21}{5} ସହିତ -\frac{1}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=2
4 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{\frac{22}{5}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-\frac{1}{5}±\frac{21}{5}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା -\frac{1}{5} ରୁ \frac{21}{5} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=-\frac{11}{5}
-\frac{22}{5} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=2 x=-\frac{11}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\left(1.4+2x\right)\left(x-0.5\right)\times \frac{1}{2}=4.05
2x ପାଇବାକୁ x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
\left(0.4x-0.7+2x^{2}\right)\times \frac{1}{2}=4.05
1.4+2x କୁ x-0.5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{1}{5}x-\frac{7}{20}+x^{2}=4.05
0.4x-0.7+2x^{2} କୁ \frac{1}{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{1}{5}x+x^{2}=4.05+\frac{7}{20}
ଉଭୟ ପାର୍ଶ୍ଵକୁ \frac{7}{20} ଯୋଡନ୍ତୁ.
\frac{1}{5}x+x^{2}=\frac{22}{5}
\frac{22}{5} ପ୍ରାପ୍ତ କରିବାକୁ 4.05 ଏବଂ \frac{7}{20} ଯୋଗ କରନ୍ତୁ.
x^{2}+\frac{1}{5}x=\frac{22}{5}
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=\frac{22}{5}+\left(\frac{1}{10}\right)^{2}
\frac{1}{10} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{1}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{10} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{22}{5}+\frac{1}{100}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{10} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{441}{100}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{100} ସହିତ \frac{22}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{1}{10}\right)^{2}=\frac{441}{100}
ଗୁଣନୀୟକ x^{2}+\frac{1}{5}x+\frac{1}{100}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{\frac{441}{100}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{10}=\frac{21}{10} x+\frac{1}{10}=-\frac{21}{10}
ସରଳୀକୃତ କରିବା.
x=2 x=-\frac{11}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{10} ବିୟୋଗ କରନ୍ତୁ.