ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. a ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{\left(-\frac{12}{7}\right)^{1}a^{4}b^{4}}{\left(-\frac{6}{7}\right)^{1}a^{3}b^{2}}
ଅଭିବ୍ୟକ୍ତିଙ୍କୁ ସରଳୀକୃତ କରିବା ପାଇଁ ଘାତାଙ୍କର ନିୟମଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}a^{4-3}b^{4-2}
ସମାନ ଆଧାରର ପାୱାର୍‌ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}a^{1}b^{4-2}
4 ରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}ab^{2}
4 ରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
2ab^{2}
-\frac{6}{7} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା -\frac{12}{7} କୁ ଗୁଣନ କରି -\frac{12}{7} କୁ -\frac{6}{7} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{\frac{12b^{4}}{7}}{-\frac{6b^{2}}{7}}\right)a^{4-3})
ସମାନ ଆଧାରର ପାୱାର୍‌ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}a}(2b^{2}a^{1})
ପାଟୀଗଣିତ କରନ୍ତୁ.
2b^{2}a^{1-1}
ଏକ ପଲିନୋମିଆଲ୍‌ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍‌ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍‌ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି nax^{n-1}.
2b^{2}a^{0}
ପାଟୀଗଣିତ କରନ୍ତୁ.
2b^{2}\times 1
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.
2b^{2}
ଯେ କୌଣସି ପଦ t, t\times 1=t ଏବଂ 1t=t ପାଇଁ.