I ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}I=\frac{A}{\lambda }\text{, }&\lambda \neq 0\\I\in \mathrm{C}\text{, }&A=0\text{ and }\lambda =0\end{matrix}\right.
A ପାଇଁ ସମାଧାନ କରନ୍ତୁ
A=I\lambda
I ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}I=\frac{A}{\lambda }\text{, }&\lambda \neq 0\\I\in \mathrm{R}\text{, }&A=0\text{ and }\lambda =0\end{matrix}\right.
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\lambda I=A
ଉଭୟ ପାର୍ଶ୍ଵକୁ A ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{\lambda I}{\lambda }=\frac{A}{\lambda }
ଉଭୟ ପାର୍ଶ୍ୱକୁ \lambda ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
I=\frac{A}{\lambda }
\lambda ଦ୍ୱାରା ବିଭାଜନ କରିବା \lambda ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
-A=-\lambda I
ଉଭୟ ପାର୍ଶ୍ୱରୁ \lambda I ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
A=\lambda I
ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\lambda I=A
ଉଭୟ ପାର୍ଶ୍ଵକୁ A ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{\lambda I}{\lambda }=\frac{A}{\lambda }
ଉଭୟ ପାର୍ଶ୍ୱକୁ \lambda ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
I=\frac{A}{\lambda }
\lambda ଦ୍ୱାରା ବିଭାଜନ କରିବା \lambda ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}