x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=0
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(\frac{x}{2^{3}}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
\left(\frac{x}{8}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
3 ର 2 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 8 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{x^{2}}{8^{2}}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
\frac{x}{8} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{x^{2}}{8^{2}}-\frac{x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x^{2}\times 3 କୁ \frac{8^{2}}{8^{2}} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}-x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
ଯେହେତୁ \frac{x^{2}}{8^{2}} ଏବଂ \frac{x^{2}\times 3\times 8^{2}}{8^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{2}-192x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2}-x^{2}\times 3\times 8^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-191x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2}-192x^{2}ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-191x^{2}}{8^{2}}+15\times \frac{x^{2}}{2^{2}}=x^{2}
\frac{x}{2} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{-191x^{2}}{8^{2}}+\frac{15x^{2}}{2^{2}}=x^{2}
15\times \frac{x^{2}}{2^{2}} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{-191x^{2}}{64}+\frac{16\times 15x^{2}}{64}=x^{2}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 8^{2} ଏବଂ 2^{2} ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 64. \frac{15x^{2}}{2^{2}} କୁ \frac{16}{16} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-191x^{2}+16\times 15x^{2}}{64}=x^{2}
ଯେହେତୁ \frac{-191x^{2}}{64} ଏବଂ \frac{16\times 15x^{2}}{64} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{-191x^{2}+240x^{2}}{64}=x^{2}
-191x^{2}+16\times 15x^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{49x^{2}}{64}=x^{2}
-191x^{2}+240x^{2}ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{49x^{2}}{64}-x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
49x^{2}-64x^{2}=0
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 64 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-15x^{2}=0
-15x^{2} ପାଇବାକୁ 49x^{2} ଏବଂ -64x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ -15 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ. କୌଣସି ଅଣ-ଶୂନ୍ୟ ସଂଖ୍ୟା ଦ୍ୱାରା ଶୂନ୍ୟ ବିଭକ୍ତ ହେଲେ ଶୂନ୍ୟ ମିଳିଥାଏ.
x=0 x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି. ସମାଧାନଗୁଡିକ ସମାନ ଅଛି.
\left(\frac{x}{2^{3}}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
\left(\frac{x}{8}\right)^{2}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
3 ର 2 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 8 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{x^{2}}{8^{2}}-x^{2}\times 3+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
\frac{x}{8} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{x^{2}}{8^{2}}-\frac{x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x^{2}\times 3 କୁ \frac{8^{2}}{8^{2}} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}-x^{2}\times 3\times 8^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
ଯେହେତୁ \frac{x^{2}}{8^{2}} ଏବଂ \frac{x^{2}\times 3\times 8^{2}}{8^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{x^{2}-192x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2}-x^{2}\times 3\times 8^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-191x^{2}}{8^{2}}+15\times \left(\frac{x}{2}\right)^{2}=x^{2}
x^{2}-192x^{2}ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-191x^{2}}{8^{2}}+15\times \frac{x^{2}}{2^{2}}=x^{2}
\frac{x}{2} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{-191x^{2}}{8^{2}}+\frac{15x^{2}}{2^{2}}=x^{2}
15\times \frac{x^{2}}{2^{2}} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{-191x^{2}}{64}+\frac{16\times 15x^{2}}{64}=x^{2}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 8^{2} ଏବଂ 2^{2} ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 64. \frac{15x^{2}}{2^{2}} କୁ \frac{16}{16} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-191x^{2}+16\times 15x^{2}}{64}=x^{2}
ଯେହେତୁ \frac{-191x^{2}}{64} ଏବଂ \frac{16\times 15x^{2}}{64} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{-191x^{2}+240x^{2}}{64}=x^{2}
-191x^{2}+16\times 15x^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{49x^{2}}{64}=x^{2}
-191x^{2}+240x^{2}ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{49x^{2}}{64}-x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
49x^{2}-64x^{2}=0
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 64 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-15x^{2}=0
-15x^{2} ପାଇବାକୁ 49x^{2} ଏବଂ -64x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ -15 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ. କୌଣସି ଅଣ-ଶୂନ୍ୟ ସଂଖ୍ୟା ଦ୍ୱାରା ଶୂନ୍ୟ ବିଭକ୍ତ ହେଲେ ଶୂନ୍ୟ ମିଳିଥାଏ.
x=\frac{0±\sqrt{0^{2}}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 0, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{0±0}{2}
0^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=0
0 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}