ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
w.r.t. y ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{\mathrm{d}}{\mathrm{d}y}(\left(\frac{x^{1}y^{-\frac{5}{6}}}{x^{\frac{3}{3}}y^{\frac{2}{3}}}\right)^{\frac{3}{2}})
1 ପ୍ରାପ୍ତ କରିବାକୁ 3 କୁ 3 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(\frac{x^{1}y^{-\frac{5}{6}}}{x^{1}y^{\frac{2}{3}}}\right)^{\frac{3}{2}})
1 ପ୍ରାପ୍ତ କରିବାକୁ 3 କୁ 3 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(\frac{y^{-\frac{5}{6}}}{y^{\frac{2}{3}}}\right)^{\frac{3}{2}})
ଉଭୟ ଲବ ଓ ହରରେ x^{1} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(\frac{1}{y^{\frac{3}{2}}}\right)^{\frac{3}{2}})
ସମାନ ଆଧାରର ଘାତ ବା ପାୱାର୍‌ ବିଭକ୍ତ କରିବା ପାଇଁ, ଲବର ଘାତାଙ୍କ ଠାରୁ ହରର ଘାତାଙ୍କ ବିୟୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1^{\frac{3}{2}}}{\left(y^{\frac{3}{2}}\right)^{\frac{3}{2}}})
\frac{1}{y^{\frac{3}{2}}} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1^{\frac{3}{2}}}{y^{\frac{9}{4}}})
ଏକ ସଂଖ୍ୟାର ପାୱାର୍‌ ଅନ୍ୟ ଏକ ପାୱାର୍‌କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. \frac{9}{4} ପାଇବାକୁ \frac{3}{2} ଏବଂ \frac{3}{2} ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y^{\frac{9}{4}}})
\frac{3}{2} ର 1 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 1 ପ୍ରାପ୍ତ କରନ୍ତୁ.
-\left(y^{\frac{9}{4}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(y^{\frac{9}{4}})
ଯଦି F ଦୁଇଟି ପ୍ରଭେଦଯୋଗ୍ୟ ଫଙ୍କସନ୍‌ର କମ୍ପୋଜିସନ୍ ହେଉଛି f\left(u\right) ଏବଂ u=g\left(x\right), ତାହା ହେଉଛି, ଯଦି F\left(x\right)=f\left(g\left(x\right)\right), ତେବେ F ର ଡେରିଭେଟିଭ୍ ହେଉଛି f ର ଡେରିଭେଟିଭ୍ ଅନୁସାରେ u ଗୁଣା g ର ଡେରିଭେଟିଭ୍ ଅନୁସାରେ x କୁ, ତାହା ହେଉଛି, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(y^{\frac{9}{4}}\right)^{-2}\times \frac{9}{4}y^{\frac{9}{4}-1}
ଏକ ପଲିନୋମିଆଲ୍‌ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍‌ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍‌ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି nax^{n-1}.
-\frac{9}{4}y^{\frac{5}{4}}\left(y^{\frac{9}{4}}\right)^{-2}
ସରଳୀକୃତ କରିବା.