x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{29}{15} = 1\frac{14}{15} \approx 1.933333333
x = -\frac{29}{15} = -1\frac{14}{15} \approx -1.933333333
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{8}{5}+\frac{1}{3}=\frac{15}{29}xx
ଭାରିଏବୁଲ୍ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ x ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
\frac{24}{15}+\frac{5}{15}=\frac{15}{29}xx
5 ଏବଂ 3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 15. \frac{8}{5} ଏବଂ \frac{1}{3} କୁ 15 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{24+5}{15}=\frac{15}{29}xx
ଯେହେତୁ \frac{24}{15} ଏବଂ \frac{5}{15} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{29}{15}=\frac{15}{29}xx
29 ପ୍ରାପ୍ତ କରିବାକୁ 24 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
\frac{29}{15}=\frac{15}{29}x^{2}
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
\frac{15}{29}x^{2}=\frac{29}{15}
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}=\frac{29}{15}\times \frac{29}{15}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{29}{15}, \frac{15}{29} ର ଆନୁପାତିକ ସଂଖ୍ୟା ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x^{2}=\frac{29\times 29}{15\times 15}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{29}{15} କୁ \frac{29}{15} ଥର ଗୁଣନ କରନ୍ତୁ.
x^{2}=\frac{841}{225}
ଭଗ୍ନାଂଶ \frac{29\times 29}{15\times 15} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
x=\frac{29}{15} x=-\frac{29}{15}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\frac{8}{5}+\frac{1}{3}=\frac{15}{29}xx
ଭାରିଏବୁଲ୍ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ x ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
\frac{24}{15}+\frac{5}{15}=\frac{15}{29}xx
5 ଏବଂ 3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 15. \frac{8}{5} ଏବଂ \frac{1}{3} କୁ 15 ହର ଥିବା ଭଗ୍ନାଂଶକୁ ରୂପାନ୍ତରିତ କରନ୍ତୁ.
\frac{24+5}{15}=\frac{15}{29}xx
ଯେହେତୁ \frac{24}{15} ଏବଂ \frac{5}{15} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{29}{15}=\frac{15}{29}xx
29 ପ୍ରାପ୍ତ କରିବାକୁ 24 ଏବଂ 5 ଯୋଗ କରନ୍ତୁ.
\frac{29}{15}=\frac{15}{29}x^{2}
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
\frac{15}{29}x^{2}=\frac{29}{15}
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
\frac{15}{29}x^{2}-\frac{29}{15}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{29}{15} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{0±\sqrt{0^{2}-4\times \frac{15}{29}\left(-\frac{29}{15}\right)}}{2\times \frac{15}{29}}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ \frac{15}{29}, b ପାଇଁ 0, ଏବଂ c ପାଇଁ -\frac{29}{15} ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{0±\sqrt{-4\times \frac{15}{29}\left(-\frac{29}{15}\right)}}{2\times \frac{15}{29}}
ବର୍ଗ 0.
x=\frac{0±\sqrt{-\frac{60}{29}\left(-\frac{29}{15}\right)}}{2\times \frac{15}{29}}
-4 କୁ \frac{15}{29} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{0±\sqrt{4}}{2\times \frac{15}{29}}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା -\frac{60}{29} କୁ -\frac{29}{15} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=\frac{0±2}{2\times \frac{15}{29}}
4 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{0±2}{\frac{30}{29}}
2 କୁ \frac{15}{29} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{29}{15}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{0±2}{\frac{30}{29}} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. \frac{30}{29} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା 2 କୁ ଗୁଣନ କରି 2 କୁ \frac{30}{29} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{29}{15}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{0±2}{\frac{30}{29}} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. \frac{30}{29} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା -2 କୁ ଗୁଣନ କରି -2 କୁ \frac{30}{29} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{29}{15} x=-\frac{29}{15}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}