ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{13}{2}y-y^{2}=-12
\frac{13}{2}-y କୁ y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{13}{2}y-y^{2}+12=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 12 ଯୋଡନ୍ତୁ.
-y^{2}+\frac{13}{2}y+12=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
y=\frac{-\frac{13}{2}±\sqrt{\left(\frac{13}{2}\right)^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ \frac{13}{2}, ଏବଂ c ପାଇଁ 12 ପ୍ରତିବଦଳ କରନ୍ତୁ.
y=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}-4\left(-1\right)\times 12}}{2\left(-1\right)}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{13}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
y=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}+4\times 12}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}+48}}{2\left(-1\right)}
4 କୁ 12 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-\frac{13}{2}±\sqrt{\frac{361}{4}}}{2\left(-1\right)}
\frac{169}{4} କୁ 48 ସହ ଯୋଡନ୍ତୁ.
y=\frac{-\frac{13}{2}±\frac{19}{2}}{2\left(-1\right)}
\frac{361}{4} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
y=\frac{-\frac{13}{2}±\frac{19}{2}}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{3}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-\frac{13}{2}±\frac{19}{2}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{19}{2} ସହିତ -\frac{13}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=-\frac{3}{2}
3 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-\frac{16}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-\frac{13}{2}±\frac{19}{2}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା -\frac{13}{2} ରୁ \frac{19}{2} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=8
-16 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-\frac{3}{2} y=8
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\frac{13}{2}y-y^{2}=-12
\frac{13}{2}-y କୁ y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-y^{2}+\frac{13}{2}y=-12
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-y^{2}+\frac{13}{2}y}{-1}=-\frac{12}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+\frac{\frac{13}{2}}{-1}y=-\frac{12}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
y^{2}-\frac{13}{2}y=-\frac{12}{-1}
\frac{13}{2} କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}-\frac{13}{2}y=12
-12 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}-\frac{13}{2}y+\left(-\frac{13}{4}\right)^{2}=12+\left(-\frac{13}{4}\right)^{2}
-\frac{13}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{13}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{13}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
y^{2}-\frac{13}{2}y+\frac{169}{16}=12+\frac{169}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{13}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
y^{2}-\frac{13}{2}y+\frac{169}{16}=\frac{361}{16}
12 କୁ \frac{169}{16} ସହ ଯୋଡନ୍ତୁ.
\left(y-\frac{13}{4}\right)^{2}=\frac{361}{16}
ଗୁଣନୀୟକ y^{2}-\frac{13}{2}y+\frac{169}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(y-\frac{13}{4}\right)^{2}}=\sqrt{\frac{361}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
y-\frac{13}{4}=\frac{19}{4} y-\frac{13}{4}=-\frac{19}{4}
ସରଳୀକୃତ କରିବା.
y=8 y=-\frac{3}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{13}{4} ଯୋଡନ୍ତୁ.