ମୂଲ୍ୟାୟନ କରିବା
\frac{14}{3}\approx 4.666666667
ଗୁଣକ
\frac{2 \cdot 7}{3} = 4\frac{2}{3} = 4.666666666666667
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(\frac{10\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{5}{\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
ଲବ ଓ ହରକୁ \sqrt{5} ଦ୍ୱାରା ଗୁଣନ କରି \frac{10}{\sqrt{5}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\left(\frac{10\sqrt{5}}{5}-\frac{5}{\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
\sqrt{5} ର ଚତୁର୍ଭୁଜ ହେଉଛି 5.
\left(2\sqrt{5}-\frac{5}{\sqrt{3}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
2\sqrt{5} ପ୍ରାପ୍ତ କରିବାକୁ 10\sqrt{5} କୁ 5 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\left(2\sqrt{5}-\frac{5\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
ଲବ ଓ ହରକୁ \sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରି \frac{5}{\sqrt{3}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\left(2\sqrt{5}-\frac{5\sqrt{3}}{3}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
\left(\frac{3\times 2\sqrt{5}}{3}-\frac{5\sqrt{3}}{3}\right)\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 2\sqrt{5} କୁ \frac{3}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{3\times 2\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
ଯେହେତୁ \frac{3\times 2\sqrt{5}}{3} ଏବଂ \frac{5\sqrt{3}}{3} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2}{\sqrt{3}}+\frac{4}{\sqrt{5}}\right)
3\times 2\sqrt{5}-5\sqrt{3} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{4}{\sqrt{5}}\right)
ଲବ ଓ ହରକୁ \sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରି \frac{2}{\sqrt{3}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{3}+\frac{4}{\sqrt{5}}\right)
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{3}+\frac{4\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)
ଲବ ଓ ହରକୁ \sqrt{5} ଦ୍ୱାରା ଗୁଣନ କରି \frac{4}{\sqrt{5}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{2\sqrt{3}}{3}+\frac{4\sqrt{5}}{5}\right)
\sqrt{5} ର ଚତୁର୍ଭୁଜ ହେଉଛି 5.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\left(\frac{5\times 2\sqrt{3}}{15}+\frac{3\times 4\sqrt{5}}{15}\right)
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 3 ଏବଂ 5 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 15. \frac{2\sqrt{3}}{3} କୁ \frac{5}{5} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{4\sqrt{5}}{5} କୁ \frac{3}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\times \frac{5\times 2\sqrt{3}+3\times 4\sqrt{5}}{15}
ଯେହେତୁ \frac{5\times 2\sqrt{3}}{15} ଏବଂ \frac{3\times 4\sqrt{5}}{15} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{6\sqrt{5}-5\sqrt{3}}{3}\times \frac{10\sqrt{3}+12\sqrt{5}}{15}
5\times 2\sqrt{3}+3\times 4\sqrt{5} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\left(6\sqrt{5}-5\sqrt{3}\right)\left(10\sqrt{3}+12\sqrt{5}\right)}{3\times 15}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{6\sqrt{5}-5\sqrt{3}}{3} କୁ \frac{10\sqrt{3}+12\sqrt{5}}{15} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(6\sqrt{5}-5\sqrt{3}\right)\left(10\sqrt{3}+12\sqrt{5}\right)}{45}
45 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 15 ଗୁଣନ କରନ୍ତୁ.
\frac{60\sqrt{3}\sqrt{5}+72\left(\sqrt{5}\right)^{2}-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
6\sqrt{5}-5\sqrt{3} ର ପ୍ରତିଟି ପଦକୁ 10\sqrt{3}+12\sqrt{5} ର ପ୍ରତିଟି ପଦ ଦ୍ୱାରା ଗୁଣନ କରି ବିତରଣ ସଂକ୍ରାଣ ଗୁଣଧର୍ମ ପ୍ରୟୋଗ କରନ୍ତୁ.
\frac{60\sqrt{15}+72\left(\sqrt{5}\right)^{2}-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
ଏକାଧିକ \sqrt{3} ଏବଂ \sqrt{5}କୁ, ସ୍କେୟାର୍ ରୁଟ୍ରେ ଏକାଧିକ ସଂଖ୍ୟା.
\frac{60\sqrt{15}+72\times 5-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
\sqrt{5} ର ଚତୁର୍ଭୁଜ ହେଉଛି 5.
\frac{60\sqrt{15}+360-50\left(\sqrt{3}\right)^{2}-60\sqrt{3}\sqrt{5}}{45}
360 ପ୍ରାପ୍ତ କରିବାକୁ 72 ଏବଂ 5 ଗୁଣନ କରନ୍ତୁ.
\frac{60\sqrt{15}+360-50\times 3-60\sqrt{3}\sqrt{5}}{45}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
\frac{60\sqrt{15}+360-150-60\sqrt{3}\sqrt{5}}{45}
-150 ପ୍ରାପ୍ତ କରିବାକୁ -50 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{60\sqrt{15}+210-60\sqrt{3}\sqrt{5}}{45}
210 ପ୍ରାପ୍ତ କରିବାକୁ 360 ଏବଂ 150 ବିୟୋଗ କରନ୍ତୁ.
\frac{60\sqrt{15}+210-60\sqrt{15}}{45}
ଏକାଧିକ \sqrt{3} ଏବଂ \sqrt{5}କୁ, ସ୍କେୟାର୍ ରୁଟ୍ରେ ଏକାଧିକ ସଂଖ୍ୟା.
\frac{210}{45}
0 ପାଇବାକୁ 60\sqrt{15} ଏବଂ -60\sqrt{15} ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{14}{3}
15 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{210}{45} ହ୍ରାସ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}