ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\left(\frac{1}{3}x-\frac{1}{2}\right)^{3} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ବ୍ୟବହାର କରନ୍ତୁ.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}x\right)^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ. ବର୍ଗ \frac{1}{2}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}\right)^{2}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
ବିସ୍ତାର କରନ୍ତୁ \left(\frac{1}{3}x\right)^{2}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{9}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
2 ର \frac{1}{3} ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ \frac{1}{9} ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\frac{1}{9}x^{2}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\frac{1}{9}x^{2}-\frac{1}{4} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x-\frac{1}{8}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
-\frac{5}{18}x^{2} ପାଇବାକୁ -\frac{1}{6}x^{2} ଏବଂ -\frac{1}{9}x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\frac{1}{8} ପ୍ରାପ୍ତ କରିବାକୁ -\frac{1}{8} ଏବଂ \frac{1}{4} ଯୋଗ କରନ୍ତୁ.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{27}x^{3}+\frac{5}{18}x^{2}=0
-\frac{1}{9}x^{2} କୁ \frac{1}{3}x-\frac{5}{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}+\frac{5}{18}x^{2}=0
0 ପାଇବାକୁ \frac{1}{27}x^{3} ଏବଂ -\frac{1}{27}x^{3} ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{1}{4}x+\frac{1}{8}=0
0 ପାଇବାକୁ -\frac{5}{18}x^{2} ଏବଂ \frac{5}{18}x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{1}{4}x=-\frac{1}{8}
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{8} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
x=-\frac{1}{8}\times 4
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4, \frac{1}{4} ର ଆନୁପାତିକ ସଂଖ୍ୟା ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x=-\frac{1}{2}
-\frac{1}{2} ପ୍ରାପ୍ତ କରିବାକୁ -\frac{1}{8} ଏବଂ 4 ଗୁଣନ କରନ୍ତୁ.